Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
U2af1 is a haplo-essential gene required for hematopoietic cancer cell survival in mice
Brian A. Wadugu, … , Timothy A. Graubert, Matthew J. Walter
Brian A. Wadugu, … , Timothy A. Graubert, Matthew J. Walter
Published September 21, 2021
Citation Information: J Clin Invest. 2021;131(21):e141401. https://doi.org/10.1172/JCI141401.
View: Text | PDF
Research Article Hematology Oncology

U2af1 is a haplo-essential gene required for hematopoietic cancer cell survival in mice

  • Text
  • PDF
Abstract

Somatic mutations in the spliceosome gene U2AF1 are common in patients with myelodysplastic syndromes. U2AF1 mutations that code for the most common amino acid substitutions are always heterozygous, and the retained WT allele is expressed, suggesting that mutant hematopoietic cells may require the residual WT allele to be viable. We show that hematopoiesis and RNA splicing in U2af1 heterozygous knockout mice were similar to those in control mice, but that deletion of the WT allele in U2AF1(S34F) heterozygous mutant–expressing hematopoietic cells (i.e., hemizygous mutant) was lethal. These results confirm that U2AF1 mutant hematopoietic cells are dependent on the expression of WT U2AF1 for survival in vivo and that U2AF1 is a haplo-essential cancer gene. Mutant U2AF1(S34F)-expressing cells were also more sensitive to reduced expression of WT U2AF1 than nonmutant cells. Furthermore, mice transplanted with leukemia cells expressing mutant U2AF1 had significantly reduced tumor burden and improved survival after the WT U2af1 allele was deleted compared with when it was not deleted. These results suggest that selectively targeting the WT U2AF1 allele in heterozygous mutant cells could induce cancer cell death and be a therapeutic strategy for patients harboring U2AF1 mutations.

Authors

Brian A. Wadugu, Sridhar Nonavinkere Srivatsan, Amanda Heard, Michael O. Alberti, Matthew Ndonwi, Jie Liu, Sarah Grieb, Joseph Bradley, Jin Shao, Tanzir Ahmed, Cara L. Shirai, Ajay Khanna, Dennis L. Fei, Christopher A. Miller, Timothy A. Graubert, Matthew J. Walter

×

Figure 8

Hematopoietic cancer cells expressing mutant U2AF1(S34F) are sensitive to decreased levels of WT U2AF1 expression.

Options: View larger image (or click on image) Download as PowerPoint
Hematopoietic cancer cells expressing mutant U2AF1(S34F) are sensitive t...
(A) Experimental design of transplantation of tgU2AF1(WT)/U2af1fl/S34F MLL-AF9 AML tumor cells (GFP+CD45.2+) isolated from the spleen of primary mice into sublethally irradiated secondary recipients. Secondary recipients were treated with or without 10,000 ppm doxycycline chow followed by pIpC induction and analysis of the peripheral blood and tumor watch. (B) GFP+ MLL-AF9 AML cell chimerism up to 21 days after the second pIpC dose (n = 10). (C) Kaplan-Meier survival curves up to 93 days after transplant (n = 10). All data are represented as mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001, 1-way ANOVA with Tukey’s multiple-comparison test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts