Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation
Kristofor E. Glinton, … , Guillermo Oliver, Edward B. Thorp
Kristofor E. Glinton, … , Guillermo Oliver, Edward B. Thorp
Published March 10, 2022
Citation Information: J Clin Invest. 2022;132(9):e140685. https://doi.org/10.1172/JCI140685.
View: Text | PDF
Research Article Inflammation Vascular biology

Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation

  • Text
  • PDF
Abstract

Clearance of dying cells by efferocytosis is necessary for cardiac repair after myocardial infarction (MI). Recent reports have suggested a protective role for vascular endothelial growth factor C (VEGFC) during acute cardiac lymphangiogenesis after MI. Here, we report that defective efferocytosis by macrophages after experimental MI led to a reduction in cardiac lymphangiogenesis and Vegfc expression. Cell-intrinsic evidence for efferocytic induction of Vegfc was revealed after adding apoptotic cells to cultured primary macrophages, which subsequently triggered Vegfc transcription and VEGFC secretion. Similarly, cardiac macrophages elevated Vegfc expression levels after MI, and mice deficient for myeloid Vegfc exhibited impaired ventricular contractility, adverse tissue remodeling, and reduced lymphangiogenesis. These results were observed in mouse models of permanent coronary occlusion and clinically relevant ischemia and reperfusion. Interestingly, myeloid Vegfc deficiency also led to increases in acute infarct size, prior to the amplitude of the acute cardiac lymphangiogenesis response. RNA-Seq and cardiac flow cytometry revealed that myeloid Vegfc deficiency was also characterized by a defective inflammatory response, and macrophage-produced VEGFC was directly effective at suppressing proinflammatory macrophage activation. Taken together, our findings indicate that cardiac macrophages promote healing through the promotion of myocardial lymphangiogenesis and the suppression of inflammatory cytokines.

Authors

Kristofor E. Glinton, Wanshu Ma, Connor Lantz, Lubov S. Grigoryeva, Matthew DeBerge, Xiaolei Liu, Maria Febbraio, Mark Kahn, Guillermo Oliver, Edward B. Thorp

×

Figure 7

Myeloid-derived Vegfc ameliorates scarring and infarct size after MI.

Options: View larger image (or click on image) Download as PowerPoint
Myeloid-derived Vegfc ameliorates scarring and infarct size after MI.
Mi...
Mice of the indicated genotypes were subjected to experimental MI after ligation of the LAD artery. (A) The AAR was determined by intramyocardial circulation of fluorescent microbeads, and the infarct (INF) size was determined by TTC staining 7 days after the MI. (B) Quantification of the AAR and infarct size. n = 4 per group. **P < 0.0018, by 2-tailed, unpaired t test. (C) Representative Picrosirius red staining and quantification of fibrosis in cardiac sections on day 28 after the ligation procedure. n = 6 per group. *P < 0.05, by 2-tailed, unpaired t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts