Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Biallelic variants in TSPOAP1, encoding the active-zone protein RIMBP1, cause autosomal recessive dystonia
Niccolò E. Mencacci, … , Dimitri Krainc, Claudio Acuna
Niccolò E. Mencacci, … , Dimitri Krainc, Claudio Acuna
Published February 4, 2021
Citation Information: J Clin Invest. 2021;131(7):e140625. https://doi.org/10.1172/JCI140625.
View: Text | PDF
Research Article Genetics Neuroscience

Biallelic variants in TSPOAP1, encoding the active-zone protein RIMBP1, cause autosomal recessive dystonia

  • Text
  • PDF
Abstract

Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense, and missense variants in TSPOAP1, which encodes the active-zone RIM-binding protein 1 (RIMBP1), as a genetic cause of autosomal recessive dystonia in 7 subjects from 3 unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.

Authors

Niccolò E. Mencacci, Marisa M. Brockmann, Jinye Dai, Sander Pajusalu, Burcu Atasu, Joaquin Campos, Gabriela Pino, Paulina Gonzalez-Latapi, Christopher Patzke, Michael Schwake, Arianna Tucci, Alan Pittman, Javier Simon-Sanchez, Gemma L. Carvill, Bettina Balint, Sarah Wiethoff, Thomas T. Warner, Apostolos Papandreou, Audrey Soo, Reet Rein, Liis Kadastik-Eerme, Sanna Puusepp, Karit Reinson, Tiiu Tomberg, Hasmet Hanagasi, Thomas Gasser, Kailash P. Bhatia, Manju A. Kurian, Ebba Lohmann, Katrin Õunap, Christian Rosenmund, Thomas C. Südhof, Nicholas W. Wood, Dimitri Krainc, Claudio Acuna

×
Options: View larger image (or click on image) Download as PowerPoint
Clinical features of subjects from families B and C with homozygous path...

Clinical features of subjects from families B and C with homozygous pathogenic TSPOAP1 variants


Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts