Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Combined immunodeficiency due to a mutation in the γ1 subunit of the coat protein I complex
Wayne Bainter, … , Victor W. Hsu, Raif S. Geha
Wayne Bainter, … , Victor W. Hsu, Raif S. Geha
Published February 1, 2021
Citation Information: J Clin Invest. 2021;131(3):e140494. https://doi.org/10.1172/JCI140494.
View: Text | PDF
Research Article Immunology

Combined immunodeficiency due to a mutation in the γ1 subunit of the coat protein I complex

  • Text
  • PDF
Abstract

The coat protein I (COPI) complex mediates retrograde trafficking from the Golgi to the endoplasmic reticulum (ER). Five siblings with persistent bacterial and viral infections and defective humoral and cellular immunity had a homozygous p.K652E mutation in the γ1 subunit of COPI (γ1-COP). The mutation disrupts COPI binding to the KDEL receptor and impairs the retrieval of KDEL-bearing chaperones from the Golgi to the ER. Homozygous Copg1K652E mice had increased ER stress in activated T and B cells, poor antibody responses, and normal numbers of T cells that proliferated normally, but underwent increased apoptosis upon activation. Exposure of the mutants to pet store mice caused weight loss, lymphopenia, and defective T cell proliferation that recapitulated the findings in the patients. The ER stress-relieving agent tauroursodeoxycholic acid corrected the immune defects of the mutants and reversed the phenotype they acquired following exposure to pet store mice. This study establishes the role of γ1-COP in the ER retrieval of KDEL-bearing chaperones and thereby the importance of ER homeostasis in adaptive immunity.

Authors

Wayne Bainter, Craig D. Platt, Seung-Yeol Park, Kelsey Stafstrom, Jacqueline G. Wallace, Zachary T. Peters, Michel J. Massaad, Michel Becuwe, Sandra Andrea Salinas, Jennifer Jones, Sarah Beaussant-Cohen, Faris Jaber, Jia-Shu Yang, Tobias C. Walther, Jordan S. Orange, Chitong Rao, Seth Rakoff-Nahoum, Maria Tsokos, Shafiq Ur Rehman Naseem, Salem Al-Tamemi, Janet Chou, Victor W. Hsu, Raif S. Geha

×

Full Text PDF | Download (7.55 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts