Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mesenchymal Bmp3b expression maintains skeletal muscle integrity and decreases in age-related sarcopenia
Akiyoshi Uezumi, Madoka Ikemoto-Uezumi, Heying Zhou, Tamaki Kurosawa, Yuki Yoshimoto, Masashi Nakatani, Keisuke Hitachi, Hisateru Yamaguchi, Shuji Wakatsuki, Toshiyuki Araki, Mitsuhiro Morita, Harumoto Yamada, Masashi Toyoda, Nobuo Kanazawa, Tatsu Nakazawa, Jun Hino, So-ichiro Fukada, Kunihiro Tsuchida
Akiyoshi Uezumi, Madoka Ikemoto-Uezumi, Heying Zhou, Tamaki Kurosawa, Yuki Yoshimoto, Masashi Nakatani, Keisuke Hitachi, Hisateru Yamaguchi, Shuji Wakatsuki, Toshiyuki Araki, Mitsuhiro Morita, Harumoto Yamada, Masashi Toyoda, Nobuo Kanazawa, Tatsu Nakazawa, Jun Hino, So-ichiro Fukada, Kunihiro Tsuchida
View: Text | PDF
Research Article Aging Muscle biology

Mesenchymal Bmp3b expression maintains skeletal muscle integrity and decreases in age-related sarcopenia

  • Text
  • PDF
Abstract

Age-related sarcopenia constitutes an important health problem associated with adverse outcomes. Sarcopenia is closely associated with fat infiltration in muscle, which is attributable to interstitial mesenchymal progenitors. Mesenchymal progenitors are nonmyogenic in nature but are required for homeostatic muscle maintenance. However, the underlying mechanism of mesenchymal progenitor–dependent muscle maintenance is not clear, nor is the precise role of mesenchymal progenitors in sarcopenia. Here, we show that mice genetically engineered to specifically deplete mesenchymal progenitors exhibited phenotypes markedly similar to sarcopenia, including muscle weakness, myofiber atrophy, alterations of fiber types, and denervation at neuromuscular junctions. Through searching for genes responsible for mesenchymal progenitor–dependent muscle maintenance, we found that Bmp3b is specifically expressed in mesenchymal progenitors, whereas its expression level is significantly decreased during aging or adipogenic differentiation. The functional importance of BMP3B in maintaining myofiber mass as well as muscle-nerve interaction was demonstrated using knockout mice and cultured cells treated with BMP3B. Furthermore, the administration of recombinant BMP3B in aged mice reversed their sarcopenic phenotypes. These results reveal previously unrecognized mechanisms by which the mesenchymal progenitors ensure muscle integrity and suggest that age-related changes in mesenchymal progenitors have a considerable impact on the development of sarcopenia.

Authors

Akiyoshi Uezumi, Madoka Ikemoto-Uezumi, Heying Zhou, Tamaki Kurosawa, Yuki Yoshimoto, Masashi Nakatani, Keisuke Hitachi, Hisateru Yamaguchi, Shuji Wakatsuki, Toshiyuki Araki, Mitsuhiro Morita, Harumoto Yamada, Masashi Toyoda, Nobuo Kanazawa, Tatsu Nakazawa, Jun Hino, So-ichiro Fukada, Kunihiro Tsuchida

×

Figure 4

Mesenchymal progenitor depletion results in defects in neural components.

Options: View larger image (or click on image) Download as PowerPoint
Mesenchymal progenitor depletion results in defects in neural components...
(A) Whole-mount immunofluorescence staining of WT EDL muscle for neurofilament (NF), acetylcholine receptor (αBTX), and PDGFRα. Arrowheads: NMJs. (B) Fluorescence images of acetylcholine receptor (αBTX) and synaptophysin. Insets show magnified images of boxed regions. Ratios of completely denervated (Comp. den), partially denervated (Part. den), and innervated (In) NMJ were calculated at 17 days after Tmx treatment. n = 6 for WT/R26-DTA, n = 8 for Pα-CE/R26-DTA. (C) Whole-mount immunofluorescence staining for PDGFRα, S100, and αBTX. (D) Expression of Schwann cell–related genes in the mid-belly of the TA muscle. n = 6 for WT/R26-DTA and n = 5 for Pα-CE/R26-DTA. *P < 0.01, **P < 0.05. Data represent the mean ± SD; 2-sided unpaired t test. Scale bars: 20 μm (A: lower panels), 50 μm (A: upper panels, and C), and 75 μm (B).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts