Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
TYRO3 induces anti–PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis
Zhou Jiang, Seung-Oe Lim, Meisi Yan, Jennifer L. Hsu, Jun Yao, Yongkun Wei, Shih-Shin Chang, Hirohito Yamaguchi, Heng-Huan Lee, Baozhen Ke, Jung-Mao Hsu, Li-Chuan Chan, Gabriel N. Hortobagyi, Liuqing Yang, Chunru Lin, Dihua Yu, Mien-Chie Hung
Zhou Jiang, Seung-Oe Lim, Meisi Yan, Jennifer L. Hsu, Jun Yao, Yongkun Wei, Shih-Shin Chang, Hirohito Yamaguchi, Heng-Huan Lee, Baozhen Ke, Jung-Mao Hsu, Li-Chuan Chan, Gabriel N. Hortobagyi, Liuqing Yang, Chunru Lin, Dihua Yu, Mien-Chie Hung
View: Text | PDF
Research Article Cell biology Oncology

TYRO3 induces anti–PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis

  • Text
  • PDF
Abstract

Immune checkpoint blockade therapy has demonstrated promising clinical outcomes for multiple cancer types. However, the emergence of resistance as well as inadequate biomarkers for patient stratification have largely limited the clinical benefits. Here, we showed that tumors with high TYRO3 expression exhibited anti–programmed cell death protein 1/programmed death ligand 1 (anti–PD-1/PD-L1) resistance in a syngeneic mouse model and in patients who received anti–PD-1/PD-L1 therapy. Mechanistically, TYRO3 inhibited tumor cell ferroptosis triggered by anti–PD-1/PD-L1 and facilitated the development of a protumor microenvironment by reducing the M1/M2 macrophage ratio, resulting in resistance to anti–PD-1/PD-L1 therapy. Inhibition of TYRO3 promoted tumor ferroptosis and sensitized resistant tumors to anti–PD-1 therapy. Collectively, our findings suggest that TYRO3 could serve as a predictive biomarker for patient selection and a promising therapeutic target to overcome anti–PD-1/PD-L1 resistance.

Authors

Zhou Jiang, Seung-Oe Lim, Meisi Yan, Jennifer L. Hsu, Jun Yao, Yongkun Wei, Shih-Shin Chang, Hirohito Yamaguchi, Heng-Huan Lee, Baozhen Ke, Jung-Mao Hsu, Li-Chuan Chan, Gabriel N. Hortobagyi, Liuqing Yang, Chunru Lin, Dihua Yu, Mien-Chie Hung

×

Figure 3

TYRO3 favors a protumor TME.

Options: View larger image (or click on image) Download as PowerPoint
TYRO3 favors a protumor TME.
(A) t-distributed stochastic neighbor embed...
(A) t-distributed stochastic neighbor embedding (t-SNE) plot of tumor-infiltrating leukocytes overlaid with color-coded clusters. Five thousand cells are displayed in each t-SNE plot. (B) Frequency of clusters of the indicated immune cell subsets. Data represent the mean ± SD (n = 3 mice per group). CD8+ T cells, P = 0.11; Tregs, P = 0.16; M1 macrophages (M1-Mφ), **P = 0.008; and M2 macrophages (M2-Mφ), P = 0.24, by 2-tailed, unpaired Student’s t test. Clusters 13, 20, 24, and 29 comprised CD3+CD8+ cytotoxic T cells; clusters 3, 14, and 16 comprised CD3+CD4+CD25+ Tregs; clusters 1, 2, 4, 5, 7, and 12 comprised CD11b+CD68+CD206−CD80+ M1-like macrophages; and clusters 8, 15, 17, 23, 26, 28, and 30 comprised CD11b+CD68+CD206+arginase 1+ M2-like macrophages.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts