Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Targeting the histone demethylase LSD1 prevents cardiomyopathy in a mouse model of laminopathy
Anne-Claire Guénantin, … , Nicolas Vignier, Michel Pucéat
Anne-Claire Guénantin, … , Nicolas Vignier, Michel Pucéat
Published January 4, 2021
Citation Information: J Clin Invest. 2021;131(1):e136488. https://doi.org/10.1172/JCI136488.
View: Text | PDF
Research Article Cardiology Development

Targeting the histone demethylase LSD1 prevents cardiomyopathy in a mouse model of laminopathy

  • Text
  • PDF
Abstract

LMNA mutations in patients are responsible for a dilated cardiomyopathy. Molecular mechanisms underlying the origin and development of the pathology are unknown. Herein, using mouse pluripotent embryonic stem cells (ESCs) and a mouse model both harboring the p.H222P Lmna mutation, we found early defects in cardiac differentiation of mutated ESCs and dilatation of mutated embryonic hearts at E13.5, pointing to a developmental origin of the disease. Using mouse ESCs, we demonstrated that cardiac differentiation of LmnaH222P/+ was impaired at the mesodermal stage. Expression of Mesp1, a mesodermal cardiogenic gene involved in epithelial-to-mesenchymal transition of epiblast cells, as well as Snai1 and Twist expression, was decreased in LmnaH222P/+ cells compared with WT cells in the course of differentiation. In turn, cardiomyocyte differentiation was impaired. ChIP assay of H3K4me1 in differentiating cells revealed a specific decrease of this histone mark on regulatory regions of Mesp1 and Twist in LmnaH222P/+ cells. Downregulation or inhibition of LSD1 that specifically demethylated H3K4me1 rescued the epigenetic landscape of mesodermal LmnaH222P/+ cells and in turn contraction of cardiomyocytes. Inhibition of LSD1 in pregnant mice or neonatal mice prevented cardiomyopathy in E13.5 LmnaH222P/H222P offspring and adults, respectively. Thus, LSD1 appeared to be a therapeutic target to prevent or cure dilated cardiomyopathy associated with a laminopathy.

Authors

Anne-Claire Guénantin, Imen Jebeniani, Julia Leschik, Erwan Watrin, Gisèle Bonne, Nicolas Vignier, Michel Pucéat

×

Figure 1

LmnaH222P/H222P mutation leads to cardiac defects in vivo in mouse embryos.

Options: View larger image (or click on image) Download as PowerPoint

LmnaH222P/H222P mutation leads to cardiac defects in vivo in mouse embr...
(A) H&E staining and IHC with an antibody against α-sarcomeric actinin (right panel) of WT and LmnaH222P/H222P embryonic hearts at E13.5. Bars show the thickness of the left ventricular wall. Yellow arrows point to the trabeculations of the ventricles in a LmnaH222P/H222P heart. The white arrow points to the enlarged atrium. (B) Echocardiographic analysis of E13.5 WT or LmnaH222P/+ and LmnaH222P/H222P embryonic hearts. (C) Ejection fraction of left ventricle of LmnaH222P/+ and LmnaH222P/H222P embryonic hearts. (D) Inset: heart drawing showing measured parameters. (E) Left ventricular volume during diastole or systole and (F) left ventricular internal diameter during diastole or systole and intraventricular septum diameter. Data are represented as mean of 9 hearts ± SEM. One-tailed Student’s t test; *P < 0.05, **P < 0.01. Hearts with very poor contractility were not included in echocardiography analysis.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts