Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson’s disease
Souvarish Sarkar, Hai M. Nguyen, Emir Malovic, Jie Luo, Monica Langley, Bharathi N. Palanisamy, Neeraj Singh, Sireesha Manne, Matthew Neal, Michelle Gabrielle, Ahmed Abdalla, Poojya Anantharam, Dharmin Rokad, Nikhil Panicker, Vikrant Singh, Muhammet Ay, Adhithiya Charli, Dilshan Harischandra, Lee-Way Jin, Huajun Jin, Srikant Rangaraju, Vellareddy Anantharam, Heike Wulff, Anumantha G. Kanthasamy
Souvarish Sarkar, Hai M. Nguyen, Emir Malovic, Jie Luo, Monica Langley, Bharathi N. Palanisamy, Neeraj Singh, Sireesha Manne, Matthew Neal, Michelle Gabrielle, Ahmed Abdalla, Poojya Anantharam, Dharmin Rokad, Nikhil Panicker, Vikrant Singh, Muhammet Ay, Adhithiya Charli, Dilshan Harischandra, Lee-Way Jin, Huajun Jin, Srikant Rangaraju, Vellareddy Anantharam, Heike Wulff, Anumantha G. Kanthasamy
View: Text | PDF
Research Article Inflammation Neuroscience

Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson’s disease

  • Text
  • PDF
Abstract

Characterization of the key cellular targets contributing to sustained microglial activation in neurodegenerative diseases, including Parkinson’s disease (PD), and optimal modulation of these targets can provide potential treatments to halt disease progression. Here, we demonstrated that microglial Kv1.3, a voltage-gated potassium channel, was transcriptionally upregulated in response to aggregated α-synuclein (αSynAgg) stimulation in primary microglial cultures and animal models of PD, as well as in postmortem human PD brains. Patch-clamp electrophysiological studies confirmed that the observed Kv1.3 upregulation translated to increased Kv1.3 channel activity. The kinase Fyn, a risk factor for PD, modulated transcriptional upregulation and posttranslational modification of microglial Kv1.3. Multiple state-of-the-art analyses, including Duolink proximity ligation assay imaging, revealed that Fyn directly bound to Kv1.3 and posttranslationally modified its channel activity. Furthermore, we demonstrated the functional relevance of Kv1.3 in augmenting the neuroinflammatory response by using Kv1.3-KO primary microglia and the Kv1.3-specific small-molecule inhibitor PAP-1, thus highlighting the importance of Kv1.3 in neuroinflammation. Administration of PAP-1 significantly inhibited neurodegeneration and neuroinflammation in multiple animal models of PD. Collectively, our results imply that Fyn-dependent regulation of Kv1.3 channels plays an obligatory role in accentuating the neuroinflammatory response in PD and identify Kv1.3 as a potential therapeutic target for PD.

Authors

Souvarish Sarkar, Hai M. Nguyen, Emir Malovic, Jie Luo, Monica Langley, Bharathi N. Palanisamy, Neeraj Singh, Sireesha Manne, Matthew Neal, Michelle Gabrielle, Ahmed Abdalla, Poojya Anantharam, Dharmin Rokad, Nikhil Panicker, Vikrant Singh, Muhammet Ay, Adhithiya Charli, Dilshan Harischandra, Lee-Way Jin, Huajun Jin, Srikant Rangaraju, Vellareddy Anantharam, Heike Wulff, Anumantha G. Kanthasamy

×

Figure 2

Upregulated expression of the potassium channel Kv1.3 upon aggregated αSyn stimulation in ex vivo slices and B cells derived from patients with PD.

Options: View larger image (or click on image) Download as PowerPoint
Upregulated expression of the potassium channel Kv1.3 upon aggregated αS...
(A) Midbrain slice cultures were treated with 1 μM αSynAgg for 24 hours. qRT-PCR shows upregulated Kv1.3 mRNA expression. (B) Western blot shows upregulated Kv1.3 protein level in midbrain slice cultures treated with 1 μM αSynAgg for 24 hours. (C) qRT-PCR of midbrain slice cultures treated with 1 μM αSynAgg for 24 hours, revealing upregulation of the proinflammatory factors Nos2, Csf2, IL-6, IL-1β, and Tnfa. (D) qRT-PCR shows increased Kv1.3 mRNA expression in B cell lymphocytes isolated from patients with PD compared with expression in B cell lymphocytes from age-matched controls. (E) Whole-cell patch clamping of B cell lymphocytes isolated from patients with PD showed higher Kv1.3 channel activity compared with that observed in age-matched controls (n = 3 control and n = 3 PD). A 1-way ANOVA was used to compare multiple groups in C and D. Tukey’s post hoc analysis was applied. A 2-tailed Student’s t test was used to compare 2 groups. Each dot on the bar graphs represents a biological replicate. Data are presented as the mean ± SEM, with 3–7 biological replicates from 2–3 independent experiments unless otherwise indicated. *P ≤ 0.05 and **P < 0.01.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts