Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Decreased lymphatic HIF-2α accentuates lymphatic remodeling in lymphedema
Xinguo Jiang, … , Gregg L. Semenza, Mark R. Nicolls
Xinguo Jiang, … , Gregg L. Semenza, Mark R. Nicolls
Published July 16, 2020
Citation Information: J Clin Invest. 2020;130(10):5562-5575. https://doi.org/10.1172/JCI136164.
View: Text | PDF
Research Article Inflammation Vascular biology

Decreased lymphatic HIF-2α accentuates lymphatic remodeling in lymphedema

  • Text
  • PDF
Abstract

Pathologic lymphatic remodeling in lymphedema evolves during periods of tissue inflammation and hypoxia through poorly defined processes. In human and mouse lymphedema, there is a significant increase of hypoxia inducible factor 1 α (HIF-1α), but a reduction of HIF-2α protein expression in lymphatic endothelial cells (LECs). We questioned whether dysregulated expression of these transcription factors contributes to disease pathogenesis and found that LEC-specific deletion of Hif2α exacerbated lymphedema pathology. Even without lymphatic vascular injury, the loss of LEC-specific Hif2α caused anatomic pathology and a functional decline in fetal and adult mice. These findings suggest that HIF-2α is an important mediator of lymphatic health. HIF-2α promoted protective phosphorylated TIE2 (p-TIE2) signaling in LECs, a process also replicated by upregulating TIE2 signaling through adenovirus-mediated angiopoietin-1 (Angpt1) gene therapy. Our study suggests that HIF-2α normally promotes healthy lymphatic homeostasis and raises the exciting possibility that restoring HIF-2α pathways in lymphedema could mitigate long-term pathology and disability.

Authors

Xinguo Jiang, Wen Tian, Eric J. Granucci, Allen B. Tu, Dongeon Kim, Petra Dahms, Shravani Pasupneti, Gongyong Peng, Yesl Kim, Amber H. Lim, F. Hernan Espinoza, Matthew Cribb, J. Brandon Dixon, Stanley G. Rockson, Gregg L. Semenza, Mark R. Nicolls

×

Full Text PDF | Download (16.90 MB)


Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts