Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
NOTCH-induced rerouting of endosomal trafficking disables regulatory T cells in vasculitis
Ke Jin, … , Jorg J. Goronzy, Cornelia M. Weyand
Ke Jin, … , Jorg J. Goronzy, Cornelia M. Weyand
Published September 22, 2020
Citation Information: J Clin Invest. 2021;131(1):e136042. https://doi.org/10.1172/JCI136042.
View: Text | PDF
Research Article Autoimmunity Immunology

NOTCH-induced rerouting of endosomal trafficking disables regulatory T cells in vasculitis

  • Text
  • PDF
Abstract

The aorta and the large conductive arteries are immunoprivileged tissues and are protected against inflammatory attack. A breakdown of immunoprivilege leads to autoimmune vasculitis, such as giant cell arteritis, in which CD8+ Treg cells fail to contain CD4+ T cells and macrophages, resulting in the formation of tissue-destructive granulomatous lesions. Here, we report that the molecular defect of malfunctioning CD8+ Treg cells lies in aberrant NOTCH4 signaling that deviates endosomal trafficking and minimizes exosome production. By transcriptionally controlling the profile of RAB GTPases, NOTCH4 signaling restricted vesicular secretion of the enzyme NADPH oxidase 2 (NOX2). Specifically, NOTCH4hiCD8+ Treg cells increased RAB5A and RAB11A expression and suppressed RAB7A, culminating in the accumulation of early and recycling endosomes and sequestering of NOX2 in an intracellular compartment. RAB7AloCD8+ Treg cells failed in the surface translocation and exosomal release of NOX2. NOTCH4hiRAB5AhiRAB7AloRAB11AhiCD8+ Treg cells left adaptive immunity unopposed, enabling a breakdown in tissue tolerance and aggressive vessel wall inflammation. Inhibiting NOTCH4 signaling corrected the defect and protected arteries from inflammatory insult. This study implicates NOTCH4-dependent transcriptional control of RAB proteins and intracellular vesicle trafficking in autoimmune disease and in vascular inflammation.

Authors

Ke Jin, Zhenke Wen, Bowen Wu, Hui Zhang, Jingtao Qiu, Yanan Wang, Kenneth J. Warrington, Gerald J. Berry, Jorg J. Goronzy, Cornelia M. Weyand

×

Figure 8

Scheme of vesicular trafficking system in CD8+ Treg cells.

Options: View larger image (or click on image) Download as PowerPoint
Scheme of vesicular trafficking system in CD8+ Treg cells.
Healthy Treg ...
Healthy Treg cells: Low NOTCH4 signaling induces low expression of RAB5A and RAB11A and high expression of RAB7A, leading to the repression of early and recycling endosomes and expansion of late endosomes. NOX2 is secreted on the surface of exosomes and reaches surrounding cells. GCA Treg cells: High NOTCH4 signaling induces high expression of RAB5A and RAB11A and suppresses expression of RAB7A, rerouting endosomal trafficking. Early and recycling endosomes are favored and late endosomes are disfavored, keeping NOX2 in an intracellular, nonsecretory compartment.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts