Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Antibacterial effect of human Vγ2Vδ2 T cells in vivo
Lisheng Wang, … , Lin Li, Jack F. Bukowski
Lisheng Wang, … , Lin Li, Jack F. Bukowski
Published November 1, 2001
Citation Information: J Clin Invest. 2001;108(9):1349-1357. https://doi.org/10.1172/JCI13584.
View: Text | PDF
Article

Antibacterial effect of human Vγ2Vδ2 T cells in vivo

  • Text
  • PDF
Abstract

Vγ2Vδ2 cells, a class of T cells found only in primates, are reactive to nonpeptide organophosphate and alkylamine antigens secreted by bacteria and parasites. These cells make up 2-5% percent of human peripheral blood T cells but expand to make up 8–60% of peripheral blood T cells during bacterial and parasitic infections. We show here, using a chimeric severe combined immunodeficiency (SCID) mouse (hu-SCID) model, that human Vγ2Vδ2 T cells mediate resistance to extracellular gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli and Morganella morganii) bacteria, as assessed by survival, body weight, bacterial loads, and histopathology. Surprisingly, this bacterial resistance was evident 1 day after infection, and bacteria were cleared well before γδ T cell expansion was detected 6 days after infection. Decreased resistance in Vδ2 T cell–depleted hu-SCID mice correlated with decreased serum IFN-γ titers. Intravenous treatment of infected, reconstituted hu-SCID mice with pamidronate, a human Vγ2Vδ2 T cell–specific aminobisphosphonate antigen, markedly increased the in vivo antibacterial effect of Vγ2Vδ2 T cells. Therefore, this large pool of antigen-specific, yet immediately reactive memory human Vγ2Vδ2 T cells is likely to be an important mediator of resistance against extracellular bacterial infection and may bridge the gap between innate and acquired immunity.

Authors

Lisheng Wang, Arati Kamath, Hiranmoy Das, Lin Li, Jack F. Bukowski

×

Full Text PDF | Download (616.07 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts