Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Human CRY1 variants associate with attention deficit/hyperactivity disorder
O. Emre Onat, M. Ece Kars, Şeref Gül, Kaya Bilguvar, Yiming Wu, Ayşe Özhan, Cihan Aydın, A. Nazlı Başak, M. Allegra Trusso, Arianna Goracci, Chiara Fallerini, Alessandra Renieri, Jean-Laurent Casanova, Yuval Itan, Cem E. Atbaşoğlu, Meram C. Saka, İ. Halil Kavaklı, Tayfun Özçelik
O. Emre Onat, M. Ece Kars, Şeref Gül, Kaya Bilguvar, Yiming Wu, Ayşe Özhan, Cihan Aydın, A. Nazlı Başak, M. Allegra Trusso, Arianna Goracci, Chiara Fallerini, Alessandra Renieri, Jean-Laurent Casanova, Yuval Itan, Cem E. Atbaşoğlu, Meram C. Saka, İ. Halil Kavaklı, Tayfun Özçelik
View: Text | PDF
Research Article Genetics

Human CRY1 variants associate with attention deficit/hyperactivity disorder

  • Text
  • PDF
Abstract

Attention deficit/hyperactivity disorder (ADHD) is a common and heritable phenotype frequently accompanied by insomnia, anxiety, and depression. Here, using a reverse phenotyping approach, we report heterozygous coding variations in the core circadian clock gene cryptochrome 1 in 15 unrelated multigenerational families with combined ADHD and insomnia. The variants led to functional alterations in the circadian molecular rhythms, providing a mechanistic link to the behavioral symptoms. One variant, CRY1Δ11 c.1657+3A>C, is present in approximately 1% of Europeans, therefore standing out as a diagnostic and therapeutic marker. We showed by exome sequencing in an independent cohort of patients with combined ADHD and insomnia that 8 of 62 patients and 0 of 369 controls carried CRY1Δ11. Also, we identified a variant, CRY1Δ6 c.825+1G>A, that shows reduced affinity for BMAL1/CLOCK and causes an arrhythmic phenotype. Genotype-phenotype correlation analysis revealed that this variant segregated with ADHD and delayed sleep phase disorder (DSPD) in the affected family. Finally, we found in a phenome-wide association study involving 9438 unrelated adult Europeans that CRY1Δ11 was associated with major depressive disorder, insomnia, and anxiety. These results defined a distinctive group of circadian psychiatric phenotypes that we propose to designate as “circiatric” disorders.

Authors

O. Emre Onat, M. Ece Kars, Şeref Gül, Kaya Bilguvar, Yiming Wu, Ayşe Özhan, Cihan Aydın, A. Nazlı Başak, M. Allegra Trusso, Arianna Goracci, Chiara Fallerini, Alessandra Renieri, Jean-Laurent Casanova, Yuval Itan, Cem E. Atbaşoğlu, Meram C. Saka, İ. Halil Kavaklı, Tayfun Özçelik

×

Figure 5

GWAS analyses of ADHD+ versus ADHD– groups.

Options: View larger image (or click on image) Download as PowerPoint
GWAS analyses of ADHD+ versus ADHD– groups.
ADHD+, affected, n = 78; ADH...
ADHD+, affected, n = 78; ADHD–, unaffected, n = 369. (A) Manhattan plot for genome-wide association of single nucleotide variants (MAF <0.05). Plots show the –log10 (P value) on the y axis and the chromosomal position of each variant on the x axis. Genes are ranked by uncorrected P values. Red line shows the genome-wide significance cutoff determined by Bonferroni’s correction. (B) Q-Q plot showing the observed and expected P values for gene-based burden analysis. (C) Q-Q plot showing the observed and expected P values for gene-based SKAT-O analysis. In the Q-Q plots, the expected null distribution (no association) is plotted along the black diagonal with the corresponding 95% CIs, and the entire distribution of the observed minimum achievable P value–adjusted (MAP-adjusted) –log10 (P value) is plotted in blue.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts