Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
High-affinity T helper epitope induces complementary helper and APC polarization, increased CTL, and protection against viral infection
Jeffrey D. Ahlers, … , Elaine K. Thomas, Jay A. Berzofsky
Jeffrey D. Ahlers, … , Elaine K. Thomas, Jay A. Berzofsky
Published December 1, 2001
Citation Information: J Clin Invest. 2001;108(11):1677-1685. https://doi.org/10.1172/JCI13463.
View: Text | PDF
Article

High-affinity T helper epitope induces complementary helper and APC polarization, increased CTL, and protection against viral infection

  • Text
  • PDF
Abstract

Natural viral proteins do not always make optimal vaccines. We have found that sequence modification to increase epitope affinity for class II MHC molecules (epitope enhancement) can improve immunogenicity. Here we show first that a higher-affinity helper epitope-enhanced HIV vaccine not only induces more cytotoxic T lymphocytes (CTLs), but also skews helper cells toward Th1 cytokine production and protects against HIV-1 recombinant vaccinia viral challenge. Furthermore, we elucidate a novel mechanism in which the higher-affinity vaccine induces dramatically more effective helper cells with a higher level of CD40L per helper cell and more positive cells, which in turn more effectively conditions dendritic cells (DCs) for CTL activation in a second culture. The improved helper cells also induce much greater IL-12 production by DCs, accounting for the reciprocal T helper polarization to Th1, and increase costimulatory molecule expression. Thus, increasing affinity for class II MHC results in a complementary interaction in which T helper and antigen-presenting cells polarize each other, as well as increase CTL, and provide greater vaccine efficacy against viral infection.

Authors

Jeffrey D. Ahlers, Igor M. Belyakov, Elaine K. Thomas, Jay A. Berzofsky

×

Full Text PDF | Download (1.47 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts