Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Donor monocyte–derived macrophages promote human acute graft-versus-host disease
Laura Jardine, Urszula Cytlak, Merry Gunawan, Gary Reynolds, Kile Green, Xiao-Nong Wang, Sarah Pagan, Maharani Paramitha, Christopher A. Lamb, Anna K. Long, Erin Hurst, Smeera Nair, Graham H. Jackson, Amy Publicover, Venetia Bigley, Muzlifah Haniffa, A.J. Simpson, Matthew Collin
Laura Jardine, Urszula Cytlak, Merry Gunawan, Gary Reynolds, Kile Green, Xiao-Nong Wang, Sarah Pagan, Maharani Paramitha, Christopher A. Lamb, Anna K. Long, Erin Hurst, Smeera Nair, Graham H. Jackson, Amy Publicover, Venetia Bigley, Muzlifah Haniffa, A.J. Simpson, Matthew Collin
View: Text | PDF
Research Article Immunology

Donor monocyte–derived macrophages promote human acute graft-versus-host disease

  • Text
  • PDF
Abstract

Myelopoiesis is invariably present and contributes to pathology in animal models of graft-versus-host disease (GVHD). In humans, a rich inflammatory infiltrate bearing macrophage markers has also been described in histological studies. In order to determine the origin, functional properties, and role in pathogenesis of these cells, we isolated single-cell suspensions from acute cutaneous GVHD and subjected them to genotype, transcriptome, and in vitro functional analysis. A donor-derived population of CD11c+CD14+ cells was the dominant population of all leukocytes in GVHD. Surface phenotype and NanoString gene expression profiling indicated the closest steady-state counterpart of these cells to be monocyte-derived macrophages. In GVHD, however, there was upregulation of monocyte antigens SIRPα and S100A8/9 transcripts associated with leukocyte trafficking, pattern recognition, antigen presentation, and costimulation. Isolated GVHD macrophages stimulated greater proliferation and activation of allogeneic T cells and secreted higher levels of inflammatory cytokines than their steady-state counterparts. In HLA-matched mixed leukocyte reactions, we also observed differentiation of activated macrophages with a similar phenotype. These exhibited cytopathicity to a keratinocyte cell line and mediated pathological damage to skin explants independently of T cells. Together, these results define the origin, functional properties, and potential pathogenic roles of human GVHD macrophages.

Authors

Laura Jardine, Urszula Cytlak, Merry Gunawan, Gary Reynolds, Kile Green, Xiao-Nong Wang, Sarah Pagan, Maharani Paramitha, Christopher A. Lamb, Anna K. Long, Erin Hurst, Smeera Nair, Graham H. Jackson, Amy Publicover, Venetia Bigley, Muzlifah Haniffa, A.J. Simpson, Matthew Collin

×

Figure 5

Monocytes are poised to differentiate into GVHD macrophages.

Options: View larger image (or click on image) Download as PowerPoint
Monocytes are poised to differentiate into GVHD macrophages.
(A) Compari...
(A) Comparison of PBMCs of healthy control, transplant patients without GVHD, and patients with GVHD. CD3–CD4+HLA-DR+ monocyte and DC populations were divided into CD14+ classical monocytes and CD14–CD16– DCs, including CD123+CD11clo pDC, CD141+ cDC1, and CD1c+ cDC2. Representative examples of 10 experiments are shown. Frequencies of gated CD14+ monocytes and CD1c+ cDC2 are indicated as percentages of HLA-DR+ cells. (B) Ratio of CD14+ monocytes to CD1c+ cDC2 in blood of GVHD patients (n = 15), BMT controls (n = 16), and healthy controls (n = 15) analyzed by flow cytometry, as shown in A. Data are represented as mean + SEM. *P < 0.05; **P < 0.01, 1-way ANOVA and Tukey’s multiple comparison tests. (C) Genes differentially expressed between healthy control monocytes and GVHD classical monocytes (upregulated in red and downregulated in purple) at fold difference in log2 gene expression of greater than 1.3 and P < 0.05. Cells sorted from n = 6 GVHD and n = 3 HC individuals. (D) Radial plot showing mean expression of chemokine genes in whole skin from patients with GVHD (red line; n = 10) and healthy controls (blue line; n = 6). Expression of the corresponding receptors by monocyte, T cell, or both is indicated. (E) Correlation between blood CD14+ monocyte frequency and CD11c+CD14+ content of GVHD dermis in paired blood and skin samples from 10 patients with GVHD. Statistical test by linear regression.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts