Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma
Zachary Miklja, Viveka Nand Yadav, Rodrigo T. Cartaxo, Ruby Siada, Chase C. Thomas, Jessica R. Cummings, Brendan Mullan, Stefanie Stallard, Alyssa Paul, Amy K. Bruzek, Kyle Wierzbicki, Tao Yang, Taylor Garcia, Ian Wolfe, Marcia Leonard, Patricia L. Robertson, Hugh J.L. Garton, Daniel R. Wahl, Hemant Parmar, Jann N. Sarkaria, Cassie Kline, Sabine Mueller, Theodore Nicolaides, Chana Glasser, Sarah E.S. Leary, Sriram Venneti, Chandan Kumar-Sinha, Arul M. Chinnaiyan, Rajen Mody, Manjunath P. Pai, Timothy N. Phoenix, Bernard L. Marini, Carl Koschmann
Zachary Miklja, Viveka Nand Yadav, Rodrigo T. Cartaxo, Ruby Siada, Chase C. Thomas, Jessica R. Cummings, Brendan Mullan, Stefanie Stallard, Alyssa Paul, Amy K. Bruzek, Kyle Wierzbicki, Tao Yang, Taylor Garcia, Ian Wolfe, Marcia Leonard, Patricia L. Robertson, Hugh J.L. Garton, Daniel R. Wahl, Hemant Parmar, Jann N. Sarkaria, Cassie Kline, Sabine Mueller, Theodore Nicolaides, Chana Glasser, Sarah E.S. Leary, Sriram Venneti, Chandan Kumar-Sinha, Arul M. Chinnaiyan, Rajen Mody, Manjunath P. Pai, Timothy N. Phoenix, Bernard L. Marini, Carl Koschmann
View: Text | PDF
Research Article Oncology

Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma

  • Text
  • PDF
Abstract

Pediatric and adult high-grade gliomas (HGGs) frequently harbor PDGFRA alterations. We hypothesized that cotreatment with everolimus may improve the efficacy of dasatinib in PDGFRα-driven glioma through combinatorial synergism and increased tumor accumulation of dasatinib. We performed dose-response, synergism, P-glycoprotein inhibition, and pharmacokinetic studies in in vitro and in vivo human and mouse models of HGG. Six patients with recurrent PDGFRα-driven glioma were treated with dasatinib and everolimus. We found that dasatinib effectively inhibited the proliferation of mouse and human primary HGG cells with a variety of PDGFRA alterations. Dasatinib exhibited synergy with everolimus in the treatment of HGG cells at low nanomolar concentrations of both agents, with a reduction in mTOR signaling that persisted after dasatinib treatment alone. Prolonged exposure to everolimus significantly improved the CNS retention of dasatinib and extended the survival of PPK tumor–bearing mice (mutant TP53, mutant PDGFRA, H3K27M). Six pediatric patients with glioma tolerated this combination without significant adverse events, and 4 patients with recurrent disease (n = 4) had a median overall survival of 8.5 months. Our results show that the efficacy of dasatinib treatment of PDGFRα-driven HGG was enhanced with everolimus and suggest a promising route for improving targeted therapy for this patient population.

Authors

Zachary Miklja, Viveka Nand Yadav, Rodrigo T. Cartaxo, Ruby Siada, Chase C. Thomas, Jessica R. Cummings, Brendan Mullan, Stefanie Stallard, Alyssa Paul, Amy K. Bruzek, Kyle Wierzbicki, Tao Yang, Taylor Garcia, Ian Wolfe, Marcia Leonard, Patricia L. Robertson, Hugh J.L. Garton, Daniel R. Wahl, Hemant Parmar, Jann N. Sarkaria, Cassie Kline, Sabine Mueller, Theodore Nicolaides, Chana Glasser, Sarah E.S. Leary, Sriram Venneti, Chandan Kumar-Sinha, Arul M. Chinnaiyan, Rajen Mody, Manjunath P. Pai, Timothy N. Phoenix, Bernard L. Marini, Carl Koschmann

×

Figure 1

PDGFRα-driven glioma demonstrates sensitivity to dasatinib in vitro.

Options: View larger image (or click on image) Download as PowerPoint
PDGFRα-driven glioma demonstrates sensitivity to dasatinib in vitro.
(A)...
(A) HGG cells were generated from an IUE model with plasmids of TP53, PDGFRA, and H3K27M mutations. (B) Proliferation of IUE HGG cells in response to addition of PDGF α and β ligands in vitro (****P ≤ 0.0001, by Dunnett’s multiple comparisons test). n = 3 technical replicates. Avg., average. (C) Western blot analysis of p-PDGFRα and total PDGFRα in response to the addition of PDGF ligands. (D) Dose-response curve of PPK neurospheres, cultured cells from 6 human PDGFRα-driven glioma cell lines, and cells from 1 PDGFRA-WT glioma cell line following treatment with dasatinib. n = 3 technical replicates. (E) Plot of glioma cell culture sensitivity to dasatinib according to the GDSC database. Analysis of PDGFRA, PDGFA, PDGFRB, and PDGFB DNA alterations is referenced (#non-GDSC data generated from primary cell culture treatment for this study). Data represent the mean ± SEM for B and D.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts