Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Targeting the mitochondrial trifunctional protein restrains tumor growth in oxidative lung carcinomas
Nivea Dias Amoedo, … , Matthieu Thumerel, Rodrigue Rossignol
Nivea Dias Amoedo, … , Matthieu Thumerel, Rodrigue Rossignol
Published January 4, 2021
Citation Information: J Clin Invest. 2021;131(1):e133081. https://doi.org/10.1172/JCI133081.
View: Text | PDF
Research Article Metabolism Oncology

Targeting the mitochondrial trifunctional protein restrains tumor growth in oxidative lung carcinomas

  • Text
  • PDF
Abstract

Metabolic reprogramming is a common hallmark of cancer, but a large variability in tumor bioenergetics exists between patients. Using high-resolution respirometry on fresh biopsies of human lung adenocarcinoma, we identified 2 subgroups reflected in the histologically normal, paired, cancer-adjacent tissue: high (OX+) mitochondrial respiration and low (OX–) mitochondrial respiration. The OX+ tumors poorly incorporated [18F]fluorodeoxy-glucose and showed increased expression of the mitochondrial trifunctional fatty acid oxidation enzyme (MTP; HADHA) compared with the paired adjacent tissue. Genetic inhibition of MTP altered OX+ tumor growth in vivo. Trimetazidine, an approved drug inhibitor of MTP used in cardiology, also reduced tumor growth and induced disruption of the physical interaction between the MTP and respiratory chain complex I, leading to a cellular redox and energy crisis. MTP expression in tumors was assessed using histology scoring methods and varied in negative correlation with [18F]fluorodeoxy-glucose incorporation. These findings provide proof-of-concept data for preclinical, precision, bioenergetic medicine in oxidative lung carcinomas.

Authors

Nivea Dias Amoedo, Saharnaz Sarlak, Emilie Obre, Pauline Esteves, Hugues Bégueret, Yann Kieffer, Benoît Rousseau, Alexis Dupis, Julien Izotte, Nadège Bellance, Laetitia Dard, Isabelle Redonnet-Vernhet, Giuseppe Punzi, Mariana Figueiredo Rodrigues, Elodie Dumon, Walid Mafhouf, Véronique Guyonnet-Dupérat, Lara Gales, Tony Palama, Floriant Bellvert, Nathalie Dugot-Senan, Stéphane Claverol, Jean-Marc Baste, Didier Lacombe, Hamid Reza Rezvani, Ciro Leonardo Pierri, Fatima Mechta-Grigoriou, Matthieu Thumerel, Rodrigue Rossignol

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 851 268
PDF 108 74
Figure 326 5
Supplemental data 212 18
Citation downloads 72 0
Totals 1,569 365
Total Views 1,934
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts