Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity
Alana E. O’Mara, … , Kong Y. Chen, Aaron M. Cypess
Alana E. O’Mara, … , Kong Y. Chen, Aaron M. Cypess
Published January 21, 2020
Citation Information: J Clin Invest. 2020;130(5):2209-2219. https://doi.org/10.1172/JCI131126.
View: Text | PDF
Clinical Medicine Endocrinology Metabolism

Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity

  • Text
  • PDF
Abstract

BACKGROUND Mirabegron is a β3-adrenergic receptor (β3-AR) agonist approved only for the treatment of overactive bladder. Encouraging preclinical results suggest that β3-AR agonists could also improve obesity-related metabolic disease by increasing brown adipose tissue (BAT) thermogenesis, white adipose tissue (WAT) lipolysis, and insulin sensitivity.METHODS We treated 14 healthy women of diverse ethnicities (27.5 ± 1.1 years of age, BMI of 25.4 ± 1.2 kg/m2) with 100 mg mirabegron (Myrbetriq extended-release tablet, Astellas Pharma) for 4 weeks in an open-label study. The primary endpoint was the change in BAT metabolic activity as measured by [18F]-2-fluoro-d-2-deoxy-d-glucose (18F-FDG) PET/CT. Secondary endpoints included resting energy expenditure (REE), plasma metabolites, and glucose and insulin metabolism as assessed by a frequently sampled intravenous glucose tolerance test.RESULTS Chronic mirabegron therapy increased BAT metabolic activity. Whole-body REE was higher, without changes in body weight or composition. Additionally, there were elevations in plasma levels of the beneficial lipoprotein biomarkers HDL and ApoA1, as well as total bile acids. Adiponectin, a WAT-derived hormone that has antidiabetic and antiinflammatory capabilities, increased with acute treatment and was 35% higher upon completion of the study. Finally, an intravenous glucose tolerance test revealed higher insulin sensitivity, glucose effectiveness, and insulin secretion.CONCLUSION These findings indicate that human BAT metabolic activity can be increased after chronic pharmacological stimulation with mirabegron and support the investigation of β3-AR agonists as a treatment for metabolic disease.TRIAL REGISTRATION Clinicaltrials.gov NCT03049462.FUNDING This work was supported by grants from the Intramural Research Program of the NIDDK, NIH (DK075112, DK075116, DK071013, and DK071014).

Authors

Alana E. O’Mara, James W. Johnson, Joyce D. Linderman, Robert J. Brychta, Suzanne McGehee, Laura A. Fletcher, Yael A. Fink, Devika Kapuria, Thomas M. Cassimatis, Nathan Kelsey, Cheryl Cero, Zahraa Abdul Sater, Francesca Piccinini, Alison S. Baskin, Brooks P. Leitner, Hongyi Cai, Corina M. Millo, William Dieckmann, Mary Walter, Norman B. Javitt, Yaron Rotman, Peter J. Walter, Marilyn Ader, Richard N. Bergman, Peter Herscovitch, Kong Y. Chen, Aaron M. Cypess

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (1.08 MB)

Advertisement

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts