Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Targetable cellular signaling events mediate vascular pathology in vascular Ehlers-Danlos syndrome
Caitlin J. Bowen, … , Elena Gallo MacFarlane, Harry C. Dietz
Caitlin J. Bowen, … , Elena Gallo MacFarlane, Harry C. Dietz
Published October 22, 2019
Citation Information: J Clin Invest. 2020;130(2):686-698. https://doi.org/10.1172/JCI130730.
View: Text | PDF
Research Article Cardiology Vascular biology

Targetable cellular signaling events mediate vascular pathology in vascular Ehlers-Danlos syndrome

  • Text
  • PDF
Abstract

Vascular Ehlers-Danlos syndrome (vEDS) is an autosomal-dominant connective tissue disorder caused by heterozygous mutations in the COL3A1 gene, which encodes the pro-α 1 chain of collagen III. Loss of structural integrity of the extracellular matrix is believed to drive the signs and symptoms of this condition, including spontaneous arterial dissection and/or rupture, the major cause of mortality. We created 2 mouse models of vEDS that carry heterozygous mutations in Col3a1 that encode glycine substitutions analogous to those found in patients, and we showed that signaling abnormalities in the PLC/IP3/PKC/ERK pathway (phospholipase C/inositol 1,4,5-triphosphate/protein kinase C/extracellular signal–regulated kinase) are major mediators of vascular pathology. Treatment with pharmacologic inhibitors of ERK1/2 or PKCβ prevented death due to spontaneous aortic rupture. Additionally, we found that pregnancy- and puberty-associated accentuation of vascular risk, also seen in vEDS patients, was rescued by attenuation of oxytocin and androgen signaling, respectively. Taken together, our results provide evidence that targetable signaling abnormalities contribute to the pathogenesis of vEDS, highlighting unanticipated therapeutic opportunities.

Authors

Caitlin J. Bowen, Juan Francisco Calderón Giadrosic, Zachary Burger, Graham Rykiel, Elaine C. Davis, Mark R. Helmers, Kelly Benke, Elena Gallo MacFarlane, Harry C. Dietz

×

Figure 2

vEDS aortas display a molecular signature for excessive PKC/ERK signaling.

Options: View larger image (or click on image) Download as PowerPoint
vEDS aortas display a molecular signature for excessive PKC/ERK signalin...
(A) Unsupervised hierarchical clustering using the most differentially expressed genes from RNAseq was performed, and vEDS samples clustered separately from controls. (B) Upstream analysis based on differentially expressed genes. Significant enrichment was determined using Fisher’s exact test. (C) Representative Western blot analysis of pPKCβ and pERK comparing Col3a1+/+ to Col3a1G209S/+ proximal descending aortas. (D) Representative Western blot analysis of pPKCβ and pERK comparing Col3a1+/+ to Col3a1G938D/+ proximal descending aortas. (E) Quantification of pPKCβ and pERK levels normalized to β-actin loading control comparing Col3a1+/+ (n = 6) to Col3a1G209S/+ (n = 6) and Col3a1G938D/+ (n = 8) aortas. Error bars show mean ± SEM. Asterisks signify significant differences using 2-tailed Student’s t test (pERK/G209S T = 2.053, DF = 16; pPKCβ/G209S T = 2.950, DF = 10; pERK/G938D T = 2.770, DF = 13; *P < 0.05) or Mann-Whitney test (G938D/pPKCβ; *P < 0.05) depending on Shapiro-Wilk normality tests.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts