Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule
Fei Deng, … , Ming Yang, Yashpal S. Kanwar
Fei Deng, … , Ming Yang, Yashpal S. Kanwar
Published August 22, 2019
Citation Information: J Clin Invest. 2019;129(11):5033-5049. https://doi.org/10.1172/JCI129903.
View: Text | PDF
Research Article Nephrology

Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule

  • Text
  • PDF
Abstract

Overexpression of myo-inositol oxygenase (MIOX), a proximal tubular enzyme, exacerbates cellular redox injury in acute kidney injury (AKI). Ferroptosis, a newly coined term associated with lipid hydroperoxidation, plays a critical role in the pathogenesis of AKI. Whether or not MIOX exacerbates tubular damage by accelerating ferroptosis in cisplatin-induced AKI remains elusive. Cisplatin-treated HK-2 cells exhibited notable cell death, which was reduced by ferroptosis inhibitors. Also, alterations in various ferroptosis metabolic sensors, including lipid hydroperoxidation, glutathione peroxidase 4 (GPX4) activity, NADPH and reduced glutathione (GSH) levels, and ferritinophagy, were observed. These perturbations were accentuated by MIOX overexpression, while ameliorated by MIOX knockdown. Likewise, cisplatin-treated CD1 mice exhibited tubular damage and derangement of renal physiological parameters, which were alleviated by ferrostatin-1, a ferroptosis inhibitor. To investigate the relevance of MIOX to ferroptosis, WT mice, MIOX-overexpressing transgenic (MIOX-Tg) mice, and MIOX-KO mice were subjected to cisplatin treatment. In comparison with cisplatin-treated WT mice, cisplatin-treated MIOX-Tg mice had more severe renal pathological changes and perturbations in ferroptosis metabolic sensors, which were minimal in cisplatin-treated MIOX-KO mice. In conclusion, these findings indicate that ferroptosis, an integral process in the pathogenesis of cisplatin-induced AKI, is modulated by the expression profile of MIOX.

Authors

Fei Deng, Isha Sharma, Yingbo Dai, Ming Yang, Yashpal S. Kanwar

×

Figure 7

Overexpression of MIOX accentuates, whereas its gene disruption attenuates, ferritin uptake by the lysosomes and accumulation of free iron after cisplatin treatment.

Options: View larger image (or click on image) Download as PowerPoint
Overexpression of MIOX accentuates, whereas its gene disruption attenuat...
Normally, ferritin (FTH1, green) was seen localized primarily in the cytoplasm and in small amounts in the lysosome (LAMP1, red) in untreated HK-2 cells (A and B). Immunofluorescence microscopy revealed considerable translocation of FTH1 into the lysosomal compartment in cisplatin-treated HK-2 cells (C, D, and M) (n = 4; *P < 0.05 compared with the control group, #P < 0.05 compared with the CP group, 1-way ANOVA with Dunn’s multiple comparisons). The translocation was tremendously enhanced in cisplatin-treated MIOX-overexpressing cells, while remarkably disrupted by the transfection of MIOX siRNA (E–M). To measure intracellular free iron levels, labile iron pool (LIP) assays were performed. The results indicated a marked increase of intracellular free iron concentration in HK-2 cells after cisplatin treatment (N) (n = 4; *P < 0.05 compared with the control group, #P < 0.05 compared with the CP group, 1-way ANOVA with Dunn’s multiple comparisons). The concentration of free iron was seen further increased in cisplatin-treated MIOX-overexpressing cells, and it was attenuated by MIOX gene disruption (N). Scale bars: 50 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts