Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule
Fei Deng, … , Ming Yang, Yashpal S. Kanwar
Fei Deng, … , Ming Yang, Yashpal S. Kanwar
Published August 22, 2019
Citation Information: J Clin Invest. 2019;129(11):5033-5049. https://doi.org/10.1172/JCI129903.
View: Text | PDF
Research Article Nephrology

Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule

  • Text
  • PDF
Abstract

Overexpression of myo-inositol oxygenase (MIOX), a proximal tubular enzyme, exacerbates cellular redox injury in acute kidney injury (AKI). Ferroptosis, a newly coined term associated with lipid hydroperoxidation, plays a critical role in the pathogenesis of AKI. Whether or not MIOX exacerbates tubular damage by accelerating ferroptosis in cisplatin-induced AKI remains elusive. Cisplatin-treated HK-2 cells exhibited notable cell death, which was reduced by ferroptosis inhibitors. Also, alterations in various ferroptosis metabolic sensors, including lipid hydroperoxidation, glutathione peroxidase 4 (GPX4) activity, NADPH and reduced glutathione (GSH) levels, and ferritinophagy, were observed. These perturbations were accentuated by MIOX overexpression, while ameliorated by MIOX knockdown. Likewise, cisplatin-treated CD1 mice exhibited tubular damage and derangement of renal physiological parameters, which were alleviated by ferrostatin-1, a ferroptosis inhibitor. To investigate the relevance of MIOX to ferroptosis, WT mice, MIOX-overexpressing transgenic (MIOX-Tg) mice, and MIOX-KO mice were subjected to cisplatin treatment. In comparison with cisplatin-treated WT mice, cisplatin-treated MIOX-Tg mice had more severe renal pathological changes and perturbations in ferroptosis metabolic sensors, which were minimal in cisplatin-treated MIOX-KO mice. In conclusion, these findings indicate that ferroptosis, an integral process in the pathogenesis of cisplatin-induced AKI, is modulated by the expression profile of MIOX.

Authors

Fei Deng, Isha Sharma, Yingbo Dai, Ming Yang, Yashpal S. Kanwar

×

Figure 10

MIOX overexpression promotes ferritinophagy in cisplatin-induced AKI.

Options: View larger image (or click on image) Download as PowerPoint
MIOX overexpression promotes ferritinophagy in cisplatin-induced AKI.
Im...
Immunofluorescence microscopy showed that both ferritin and NCOA4 were mainly expressed in renal tubular epithelia (A–L). The expression of NCOA4 decreased in cisplatin-treated WT mice; however, MIOX-KO mice were unaffected, as indicated by immunofluorescence and immunoblotting studies (B vs. A, F vs. E, and M). The maximal decrease in the NCOA4 expression was observed in cisplatin-treated MIOX-Tg mice (D vs. B and C, and M). Intriguingly, FTH1 expression increased markedly in cisplatin-treated WT mice (H vs. G, and M). This upregulation may be due to the feedback mechanism (21), which was substantiated by reverse transcriptase PCR analyses in the present study. The analyses revealed increased FTH1 and decreased transferrin mRNA levels in cisplatin-treated kidneys (N and O) (n = 6; *P < 0.05 compared with the control group, 2-tailed Student’s t test). FTH1 expression in cisplatin-treated MIOX-Tg mice was maximally increased, while no obvious changes were noted in cisplatin-treated MIOX-KO mice (J vs. H and I, L vs. K, and M). Scale bars: 30 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts