Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The anti-IgE mAb omalizumab induces adverse reactions by engaging Fcγ receptors
Bianca Balbino, … , Pierre Bruhns, Laurent L. Reber
Bianca Balbino, … , Pierre Bruhns, Laurent L. Reber
Published November 26, 2019
Citation Information: J Clin Invest. 2020;130(3):1330-1335. https://doi.org/10.1172/JCI129697.
View: Text | PDF
Concise Communication Immunology Inflammation

The anti-IgE mAb omalizumab induces adverse reactions by engaging Fcγ receptors

  • Text
  • PDF
Abstract

Omalizumab is an anti-IgE monoclonal antibody (mAb) approved for the treatment of severe asthma and chronic spontaneous urticaria. Use of omalizumab is associated with reported side effects ranging from local skin inflammation at the injection site to systemic anaphylaxis. To date, the mechanisms through which omalizumab induces adverse reactions are still unknown. Here, we demonstrated that immune complexes formed between omalizumab and IgE can induce both skin inflammation and anaphylaxis through engagement of IgG receptors (FcγRs) in FcγR-humanized mice. We further developed an Fc-engineered mutant version of omalizumab, and demonstrated that this mAb is equally potent as omalizumab at blocking IgE-mediated allergic reactions, but does not induce FcγR-dependent adverse reactions. Overall, our data indicate that omalizumab can induce skin inflammation and anaphylaxis by engaging FcγRs, and demonstrate that Fc-engineered versions of the mAb could be used to reduce such adverse reactions.

Authors

Bianca Balbino, Pauline Herviou, Ophélie Godon, Julien Stackowicz, Odile Richard-Le Goff, Bruno Iannascoli, Delphine Sterlin, Sébastien Brûlé, Gael A. Millot, Faith M. Harris, Vera A. Voronina, Kari C. Nadeau, Lynn E. Macdonald, Andrew J. Murphy, Pierre Bruhns, Laurent L. Reber

×

Full Text PDF | Download (827.42 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts