Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
CNS-targeting pharmacological interventions for the metabolic syndrome
Kerstin Stemmer, … , Paul T. Pfluger, Matthias H. Tschöp
Kerstin Stemmer, … , Paul T. Pfluger, Matthias H. Tschöp
Published August 5, 2019
Citation Information: J Clin Invest. 2019;129(10):4058-4071. https://doi.org/10.1172/JCI129195.
View: Text | PDF
Review Series

CNS-targeting pharmacological interventions for the metabolic syndrome

  • Text
  • PDF
Abstract

The metabolic syndrome (MetS) encompasses medical conditions such as obesity, hyperglycemia, high blood pressure, and dyslipidemia that are major drivers for the ever-increasing prevalence of type 2 diabetes, cardiovascular diseases, and certain types of cancer. At the core of clinical strategies against the MetS is weight loss, induced by bariatric surgery, lifestyle changes based on calorie reduction and exercise, or pharmacology. This Review summarizes the past, current, and future efforts of targeting the MetS by pharmacological agents. Major emphasis is given to drugs that target the CNS as a key denominator for obesity and its comorbid sequelae.

Authors

Kerstin Stemmer, Timo D. Müller, Richard D. DiMarchi, Paul T. Pfluger, Matthias H. Tschöp

×

Figure 2

Central monoaminergic drug action.

Options: View larger image (or click on image) Download as PowerPoint
Central monoaminergic drug action.
Pharmacological effects of amphetamin...
Pharmacological effects of amphetamines and their congeners are primarily mediated by increased synaptic release of monoamine neurotransmitters norepinephrine (NE), dopamine (DA), and, to a lesser extent, serotonin (5-HT). (A) (i) Amphetamines are competitive agonists for NET and DAT. (ii) Upon entering the presynaptic neuron, amphetamines bind to VMAT2, thereby inhibiting monoamine translocation from the cytosolic pool into storage vesicles. (iii) Amphetamines also weakly inhibit monoamine oxidase–mediated (MAO-mediated) monoamine breakdown, resulting in intracellular increase of monoamines. (iv) Amphetamines can further activate the intracellular trace amine-associated receptor 1 (TAAR1) to promote DA efflux. All processes contribute to reverse transport via NET or DAT, enhancing extracellular monoamine release. (v) Elevated monoamine release induces satiety and decreases feeding by activating postsynaptic α- and β-adrenergic (NE) and D1/D2 (DA) receptors. Increased DA signaling within the mesocorticolimbic system contributes to the addictive properties of amphetamines and their congeners. (B) Selective serotonergic drugs act either as (i) serotonin-releasing agents (SRAs), (ii) selective serotonin reuptake inhibitors (SSRIs), or (iii) selective 5-HT2C receptor agonists. SRAs (e.g., fenfluramine) increase synaptic 5-HT release, augmenting serotonergic function. Although SRAs’ precise mechanisms remain unclear, they may be comparable to NE and DA releasers, i.e. reversing SERT- or VMAT2-mediated 5-HT transport. SSRIs (e.g., sibutramine) selectively bind SERT to inhibit 5-HT re-uptake. Postsynaptic 5-HT2C receptors appear to mediate the main effects of 5-HT on food intake and are the target of selective 5-HT2C receptor agonists such as lorcaserin. Presynaptic autoreceptor 5-HT1A and postsynaptic 5-HT1B, 5-HT2B, and 5-HT6 receptors may also contribute to the regulation of food intake by 5-HT. Monoaminergic drugs act at pre- and postsynaptic neurons, and they also interact with monoaminergic signaling on astrocytes. Astrocytic expression of NET, DAT, SERT, and metabolizing enzymes such as MAO can regulate monoamine levels in the synaptic cleft, neurotransmitter release from astrocytes and its transport into presynaptic neurons, and postsynaptic neuron activity.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts