Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress
Cecilia Domínguez Conde, … , Mirjam van der Burg, Kaan Boztug
Cecilia Domínguez Conde, … , Mirjam van der Burg, Kaan Boztug
Published August 26, 2019
Citation Information: J Clin Invest. 2019;129(10):4194-4206. https://doi.org/10.1172/JCI128903.
View: Text | PDF
Research Article Genetics Immunology

Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress

  • Text
  • PDF
Abstract

Polymerase δ is essential for eukaryotic genome duplication and synthesizes DNA at both the leading and lagging strands. The polymerase δ complex is a heterotetramer comprising the catalytic subunit POLD1 and the accessory subunits POLD2, POLD3, and POLD4. Beyond DNA replication, the polymerase δ complex has emerged as a central element in genome maintenance. The essentiality of polymerase δ has constrained the generation of polymerase δ–knockout cell lines or model organisms and, therefore, the understanding of the complexity of its activity and the function of its accessory subunits. To our knowledge, no germline biallelic mutations affecting this complex have been reported in humans. In patients from 2 independent pedigrees, we have identified what we believe to be a novel syndrome with reduced functionality of the polymerase δ complex caused by germline biallelic mutations in POLD1 or POLD2 as the underlying etiology of a previously unknown autosomal-recessive syndrome that combines replicative stress, neurodevelopmental abnormalities, and immunodeficiency. Patients’ cells showed impaired cell-cycle progression and replication-associated DNA lesions that were reversible upon overexpression of polymerase δ. The mutations affected the stability and interactions within the polymerase δ complex or its intrinsic polymerase activity. We believe our discovery of human polymerase δ deficiency identifies the central role of this complex in the prevention of replication-related DNA lesions, with particular relevance to adaptive immunity.

Authors

Cecilia Domínguez Conde, Özlem Yüce Petronczki, Safa Baris, Katharina L. Willmann, Enrico Girardi, Elisabeth Salzer, Stefan Weitzer, Rico Chandra Ardy, Ana Krolo, Hanna Ijspeert, Ayca Kiykim, Elif Karakoc-Aydiner, Elisabeth Förster-Waldl, Leo Kager, Winfried F. Pickl, Giulio Superti-Furga, Javier Martínez, Joanna I. Loizou, Ahmet Ozen, Mirjam van der Burg, Kaan Boztug

×

Figure 5

Polymerase δ mutation leads to 53BP1 lesions in G1 that are rescued by transduction of WT POLD2.

Options: View larger image (or click on image) Download as PowerPoint
Polymerase δ mutation leads to 53BP1 lesions in G1 that are rescued by t...
(A) Immunofluorescence staining of 53BP1 and CYCA in HD and P1 fibroblasts. Original magnification, ×20. (B) Quantification of 53BP1 foci in S/G2 (CYCA+) and G1 (CYCA–) nuclei. Percentage of cells with more than 2 foci per nucleus, S phase: 18.3% (HD) and 42.5% (P1); G1 phase: 10.6% (HD) and 28.2% (P1). Data are representative of 3 independent experiments. (C) Immunofluorescence staining of 53BP1 foci and CYCA in expanded T cells from HDs, P1, and P2. Original magnification, ×20. (D) Quantification of 53BP1 foci per nucleus from C, unstimulated or 48 hours or 72 hours after anti-CD3 and anti-CD28 stimulation. (E and F) Quantification of 53BP1 foci in (E) S/G2 (CYCA+) and (F) G1 (CYCA–) nuclei of HD and P1 fibroblasts upon transduction with WT POLD2 or GFP control (mock). Number of cells counted: 75 (HD plus mock), 192 (HD plus POLD2), 58 (P1 plus mock), and 213 (P1 plus POLD2). Data are representative of 2 independent experiments. Image analysis was performed using CellProfiler 2.0.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts