Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Dysfunctional polycomb transcriptional repression contributes to lamin A/C–dependent muscular dystrophy
Andrea Bianchi, … , Claudia Bearzi, Chiara Lanzuolo
Andrea Bianchi, … , Claudia Bearzi, Chiara Lanzuolo
Published January 30, 2020
Citation Information: J Clin Invest. 2020;130(5):2408-2421. https://doi.org/10.1172/JCI128161.
View: Text | PDF
Research Article Muscle biology

Dysfunctional polycomb transcriptional repression contributes to lamin A/C–dependent muscular dystrophy

  • Text
  • PDF
Abstract

Lamin A is a component of the inner nuclear membrane that, together with epigenetic factors, organizes the genome in higher order structures required for transcriptional control. Mutations in the lamin A/C gene cause several diseases belonging to the class of laminopathies, including muscular dystrophies. Nevertheless, molecular mechanisms involved in the pathogenesis of lamin A–dependent dystrophies are still largely unknown. The polycomb group (PcG) of proteins are epigenetic repressors and lamin A interactors, primarily involved in the maintenance of cell identity. Using a murine model of Emery-Dreifuss muscular dystrophy (EDMD), we show here that lamin A loss deregulated PcG positioning in muscle satellite stem cells, leading to derepression of non–muscle-specific genes and p16INK4a, a senescence driver encoded in the Cdkn2a locus. This aberrant transcriptional program caused impairment in self-renewal, loss of cell identity, and premature exhaustion of the quiescent satellite cell pool. Genetic ablation of the Cdkn2a locus restored muscle stem cell properties in lamin A/C–null dystrophic mice. Our findings establish a direct link between lamin A and PcG epigenetic silencing and indicate that lamin A–dependent muscular dystrophy can be ascribed to intrinsic epigenetic dysfunctions of muscle stem cells.

Authors

Andrea Bianchi, Chiara Mozzetta, Gloria Pegoli, Federica Lucini, Sara Valsoni, Valentina Rosti, Cristiano Petrini, Alice Cortesi, Francesco Gregoretti, Laura Antonelli, Gennaro Oliva, Marco De Bardi, Roberto Rizzi, Beatrice Bodega, Diego Pasini, Francesco Ferrari, Claudia Bearzi, Chiara Lanzuolo

×

Figure 6

LmnaΔ8–11–/– MuSCs acquire senescence transcriptional traits.

Options: View larger image (or click on image) Download as PowerPoint

LmnaΔ8–11–/– MuSCs acquire senescence transcriptional traits.
(A) Repre...
(A) Representative image of myofiber-derived MuSCs from LmnaΔ8–11 mice at d19 immunostained for p-p38 and PAX7 after 48 hours of culture. Scale bars: 25 μm. (B) Quantification of asymmetric and symmetric divisions assessed by p-p38 distribution as shown in A. (C) Quantification of asymmetric apico-basal division versus symmetric planar divisions. n = 46 ± 6 doublets of MuSCs per genotype, n = 7–9 mice per group. Data in B and C are the mean ± SEM. (D) GSEA of expression data from old and young mouse quiescent satellite cells (25). Upregulated (log[fold change] > 1) genes in hom versus WT comparison added to Biocarta mouse pathways from the gskb R package were used as gene sets (NES = 4.70, FDR < 1 × 10–4). (E) ChIP-seq of H3K27me3 mark and RNA-seq signal tracks on the Cdkn1a/p21 locus. Promoter regions are highlighted by light blue rectangles. Statistics by 2-way ANOVA with multiple comparisons. **P < 0.01; ***P < 0.001. WT = LmnaΔ8–11 /+; het = LmnaΔ8–11+/–; hom = LmnaΔ8–11–/–.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts