Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Residual β cell function and monogenic variants in long-duration type 1 diabetes patients
Marc Gregory Yu, … , Marcus G. Pezzolesi, George Liang King
Marc Gregory Yu, … , Marcus G. Pezzolesi, George Liang King
Published July 2, 2019
Citation Information: J Clin Invest. 2019;129(8):3252-3263. https://doi.org/10.1172/JCI127397.
View: Text | PDF
Clinical Medicine Endocrinology Metabolism

Residual β cell function and monogenic variants in long-duration type 1 diabetes patients

  • Text
  • PDF
Abstract

BACKGROUND In the Joslin Medalist Study (Medalists), we determined whether significant associations exist between β cell function and pathology and clinical characteristics.METHODS Individuals with type 1 diabetes (T1D) for 50 or more years underwent evaluation including HLA analysis, basal and longitudinal autoantibody (AAb) status, and β cell function by a mixed-meal tolerance test (MMTT) and a hyperglycemia/arginine clamp procedure. Postmortem analysis of pancreases from 68 Medalists was performed. Monogenic diabetes genes were screened for the entire cohort.RESULTS Of the 1019 Medalists, 32.4% retained detectable C-peptide levels (>0.05 ng/mL, median: 0.21 ng/mL). In those who underwent a MMTT (n = 516), 5.8% responded with a doubling of baseline C-peptide levels. Longitudinally (n = 181, median: 4 years), C-peptide levels increased in 12.2% (n = 22) and decreased in 37% (n = 67) of the Medalists. Among those with repeated MMTTs, 5.4% (3 of 56) and 16.1% (9 of 56) had waxing and waning responses, respectively. Thirty Medalists with baseline C-peptide levels of 0.1 ng/mL or higher underwent the clamp procedure, with HLA–/AAb– and HLA+/AAb– Medalists being most responsive. Postmortem examination of pancreases from 68 Medalists showed that all had scattered insulin-positive cells; 59 additionally had few insulin-positive cells within a few islets; and 14 additionally had lobes with multiple islets with numerous insulin-positive cells. Genetic analysis revealed that 280 Medalists (27.5%) had monogenic diabetes variants; in 80 (7.9%) of these Medalists, the variants were classified as “likely pathogenic” (rare exome variant ensemble learner [REVEL] >0.75).CONCLUSION All Medalists retained insulin-positive β cells, with many responding to metabolic stimuli even after 50 years of T1D. The Medalists were heterogeneous with respect to β cell function, and many with HLA+ diabetes risk alleles also had monogenic diabetes variants, indicating the importance of genetic testing for clinically diagnosed T1D.FUNDING Funding for this work was provided by the Dianne Nunnally Hoppes Fund; the Beatson Pledge Fund; the NIH, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK); and the American Diabetes Association (ADA).

Authors

Marc Gregory Yu, Hillary A. Keenan, Hetal S. Shah, Scott G. Frodsham, David Pober, Zhiheng He, Emily A. Wolfson, Stephanie D’Eon, Liane J. Tinsley, Susan Bonner-Weir, Marcus G. Pezzolesi, George Liang King

×

Figure 2

Medalist responses to a hyperglycemic/arginine clamp.

Options: View larger image (or click on image) Download as PowerPoint
Medalist responses to a hyperglycemic/arginine clamp.
(A) Individual res...
(A) Individual responses of the Joslin Medalists to a hyperglycemic clamp with arginine infusion. Blood glucose was clamped at 300 mg/dL within 45 minutes of beginning the infusion, at which point the subjects received a 5-g arginine bolus. Gray denotes previous MMTT responders; black indicates nonresponders. The graphs of nonresponders may overlap. C-peptide concentration, ng/mL; duration of clamp, min (n = 22). (B) Comparison of the clamp response with MMTT response. Shaded cells represent the cases in which the MMTT and arginine clamp responses were not the same for both tests. The response to the arginine clamp was defined as a doubling of C-peptide levels 5 minutes after the arginine bolus infusion; the response to the MMTT was defined as a doubling of baseline C-peptide levels (n = 22).
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts