Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Airway epithelium–shifted mast cell infiltration regulates asthmatic inflammation via IL-33 signaling
Matthew C. Altman, … , Michael C. Peters, Teal S. Hallstrand
Matthew C. Altman, … , Michael C. Peters, Teal S. Hallstrand
Published August 22, 2019
Citation Information: J Clin Invest. 2019;129(11):4979-4991. https://doi.org/10.1172/JCI126402.
View: Text | PDF
Research Article Immunology Pulmonology

Airway epithelium–shifted mast cell infiltration regulates asthmatic inflammation via IL-33 signaling

  • Text
  • PDF
Abstract

Asthma is a heterogeneous syndrome that has been subdivided into physiologic phenotypes and molecular endotypes. The most specific phenotypic manifestation of asthma is indirect airway hyperresponsiveness (AHR), and a prominent molecular endotype is the presence of type 2 inflammation. The underlying basis for type 2 inflammation and its relationship to AHR are incompletely understood. We assessed the expression of type 2 cytokines in the airways of subjects with and without asthma who were extensively characterized for AHR. Using quantitative morphometry of the airway wall, we identified a shift in mast cells from the submucosa to the airway epithelium specifically associated with both type 2 inflammation and indirect AHR. Using ex vivo modeling of primary airway epithelial cells in organotypic coculture with mast cells, we show that epithelial-derived IL-33 uniquely induced type 2 cytokines in mast cells, which regulated the expression of epithelial IL33 in a feed-forward loop. This feed-forward loop was accentuated in epithelial cells derived from subjects with asthma. These results demonstrate that type 2 inflammation and indirect AHR in asthma are related to a shift in mast cell infiltration to the airway epithelium, and that mast cells cooperate with epithelial cells through IL-33 signaling to regulate type 2 inflammation.

Authors

Matthew C. Altman, Ying Lai, James D. Nolin, Sydney Long, Chien-Chang Chen, Adrian M. Piliponsky, William A. Altemeier, Megan Larmore, Charles W. Frevert, Michael S. Mulligan, Steven F. Ziegler, Jason S. Debley, Michael C. Peters, Teal S. Hallstrand

×

Figure 9

Feed-forward amplification of epithelial IL33 expression is higher in epithelial cells from children with asthma compared with healthy children.

Options: View larger image (or click on image) Download as PowerPoint
Feed-forward amplification of epithelial IL33 expression is higher in ep...
Amplification of epithelial IL33 expression by coculture with IL-33–primed LUVA mast cells was greater in epithelial cells isolated from children with asthma compared with epithelial cells isolated from healthy nonatopic children (n = 3 per group). Significance was assessed by 2-way ANOVA. There was a notable trend toward an increased effect of IL-33–primed mast cells on epithelial cells derived from children with asthma. *P = 0.1 for the post hoc test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts