Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson’s disease
Irene Sebastianutto, … , M. Angela Cenci, Julie Perroy
Irene Sebastianutto, … , M. Angela Cenci, Julie Perroy
Published February 10, 2020
Citation Information: J Clin Invest. 2020;130(3):1168-1184. https://doi.org/10.1172/JCI126361.
View: Text | PDF
Research Article Neuroscience

D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson’s disease

  • Text
  • PDF
Abstract

Dopamine receptor D1 modulates glutamatergic transmission in cortico-basal ganglia circuits and represents a major target of L-DOPA therapy in Parkinson’s disease. Here we show that D1 and metabotropic glutamate type 5 (mGlu5) receptors can form previously unknown heteromeric entities with distinctive functional properties. Interacting with Gq proteins, cell-surface D1-mGlu5 heteromers exacerbated PLC signaling and intracellular calcium release in response to either glutamate or dopamine. In rodent models of Parkinson’s disease, D1-mGlu5 nanocomplexes were strongly upregulated in the dopamine-denervated striatum, resulting in a synergistic activation of PLC signaling by D1 and mGlu5 receptor agonists. In turn, D1-mGlu5–dependent PLC signaling was causally linked with excessive activation of extracellular signal–regulated kinases in striatal neurons, leading to dyskinesia in animals treated with L-DOPA or D1 receptor agonists. The discovery of D1-mGlu5 functional heteromers mediating maladaptive molecular and motor responses in the dopamine-denervated striatum may prompt the development of new therapeutic principles for Parkinson’s disease.

Authors

Irene Sebastianutto, Elise Goyet, Laura Andreoli, Joan Font-Ingles, David Moreno-Delgado, Nathalie Bouquier, Céline Jahannault-Talignani, Enora Moutin, Luisa Di Menna, Natallia Maslava, Jean-Philippe Pin, Laurent Fagni, Ferdinando Nicoletti, Fabrice Ango, M. Angela Cenci, Julie Perroy

×

Figure 2

D1 and mGlu5 receptors form heteromers in neurons.

Options: View larger image (or click on image) Download as PowerPoint
D1 and mGlu5 receptors form heteromers in neurons.
(A–C) BRET imaging be...
(A–C) BRET imaging between mGlu5-Nluc and D1-Venus was measured in soma, dendrites, and spines of hippocampal neurons. (A) Single-cell BRET imaging in neurons expressing either mGlu5-Nluc and D1-Venus (top) or mGlu5-Nluc with DsRed as transfection reporter (bottom). Cells were identified by green or red fluorescence (left). Em480 and Em535 images were recorded, and the 535 nm/480 nm pseudo-colored ratio images were processed. Square areas are shown at a higher magnification in the insets, which are 3 μm × 3 μm. Cells are representative of 19 to 21 cells. Scale bar: 10 μm. (B) Quantification of the BRET signal intensity in soma from mGlu5-Nluc and D1-Venus transfected neurons compared with the basal BRET measured in neurons expressing mGlu5-Nluc alone (left). Box and whiskers plots of 19 to 20 measurements in the soma of neurons. ****P < 0.0001, Mann-Whitney U test. (C) netBRET between mGlu5-Nluc and D1-Venus in soma, dendrites, and spines. The average basal BRET in respective compartment has been subtracted from BRET measurements. Box and whiskers plots of n = 23 measurements in soma, n = 21 in dendrites, n = 11 in spines from neurons expressing mGlu5-Nluc and D1-Venus. #P < 0.05, Kruskal-Wallis test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts