Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Identifying and targeting pathogenic PI3K/AKT/mTOR signaling in IL-6 blockade–refractory idiopathic multicentric Castleman disease
David C. Fajgenbaum, … , Frits van Rhee, Thomas S. Uldrick
David C. Fajgenbaum, … , Frits van Rhee, Thomas S. Uldrick
Published August 13, 2019
Citation Information: J Clin Invest. 2019;129(10):4451-4463. https://doi.org/10.1172/JCI126091.
View: Text | PDF
Clinical Research and Public Health Hematology Immunology

Identifying and targeting pathogenic PI3K/AKT/mTOR signaling in IL-6 blockade–refractory idiopathic multicentric Castleman disease

  • Text
  • PDF
Abstract

BACKGROUND Idiopathic multicentric Castleman disease (iMCD) is a hematologic illness involving cytokine-induced lymphoproliferation, systemic inflammation, cytopenias, and life-threatening multi-organ dysfunction. The molecular underpinnings of interleukin-6 (IL-6) blockade–refractory patients remain unknown; no targeted therapies exist. In this study, we searched for therapeutic targets in IL-6 blockade–refractory iMCD patients with the thrombocytopenia, anasarca, fever/elevated C-reactive protein, reticulin myelofibrosis, renal dysfunction, organomegaly (TAFRO) clinical subtype.METHODS We analyzed tissues and blood samples from 3 IL-6 blockade–refractory iMCD-TAFRO patients. Cytokine panels, quantitative serum proteomics, flow cytometry of PBMCs, and pathway analyses were employed to identify novel therapeutic targets. To confirm elevated mTOR signaling, a candidate therapeutic target from the above assays, immunohistochemistry was performed for phosphorylated S6, a read-out of mTOR activation, in 3 iMCD lymph node tissue samples and controls. Proteomic, immunophenotypic, and clinical response assessments were performed to quantify the effects of administration of the mTOR inhibitor sirolimus.RESULTS Studies of 3 IL-6 blockade–refractory iMCD cases revealed increased CD8+ T cell activation, VEGF-A, and PI3K/Akt/mTOR pathway activity. Administration of sirolimus substantially attenuated CD8+ T cell activation and decreased VEGF-A levels. Sirolimus induced clinical benefit responses in all 3 patients with durable and ongoing remissions of 66, 19, and 19 months.CONCLUSION This precision medicine approach identifies PI3K/Akt/mTOR signaling as the first pharmacologically targetable pathogenic process in IL-6 blockade–refractory iMCD. Prospective evaluation of sirolimus in treatment-refractory iMCD is planned (NCT03933904).FUNDING This study was supported by the Castleman’s Awareness & Research Effort/Castleman Disease Collaborative Network, Penn Center for Precision Medicine, University Research Foundation, Intramural NIH funding, and the National Heart Lung and Blood Institute.

Authors

David C. Fajgenbaum, Ruth-Anne Langan, Alberto Sada Japp, Helen L. Partridge, Sheila K. Pierson, Amrit Singh, Daniel J. Arenas, Jason R. Ruth, Christopher S. Nabel, Katie Stone, Mariko Okumura, Anthony Schwarer, Fábio Freire Jose, Nelson Hamerschlak, Gerald B. Wertheim, Michael B. Jordan, Adam D. Cohen, Vera Krymskaya, Arthur Rubenstein, Michael R. Betts, Taku Kambayashi, Frits van Rhee, Thomas S. Uldrick

×

Figure 3

Serum proteomics and pathway analyses identify VEGF-A, sIL-2Rα, and PI3K/Akt/mTOR signaling as candidate therapeutic targets for iMCD-1.

Options: View larger image (or click on image) Download as PowerPoint
Serum proteomics and pathway analyses identify VEGF-A, sIL-2Rα, and PI3K...
(A) Heatmap of the analytes whose levels increase (blue) or decrease (orange) by at least 2-fold in the same direction between flare and remission for iMCD-1’s third and fifth flares, as measured by Myriad RBM DiscoveryMAP (n = 1). Analytes are presented in ascending order from left to right based on the log2 (flare/remission) fold-change at the fifth flare, compared with remission. Key provides the color intensity for a given fold change. (B, C) Enrichment analysis, using Enrichr, of Myriad RBM DiscoveryMAP gene sets for metabolic pathways for iMCD-1. Results of the top 5 enriched gene sets (FDR < 0.01, rank ordered by combined score) from the (B) third flare and (C) fifth flare when proteins with log2 (flare/remission) greater than 2 were analyzed for KEGG pathway gene sets. Colored cells represent gene members in specific pathways that were found to be greater than 4-fold up (blue) or 4-fold down (orange) during flare compared with remission.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts