Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hemodynamic regulation of perivalvular endothelial gene expression prevents deep venous thrombosis
John D. Welsh, … , Juan M. Jimenez, Mark L. Kahn
John D. Welsh, … , Juan M. Jimenez, Mark L. Kahn
Published November 11, 2019
Citation Information: J Clin Invest. 2019;129(12):5489-5500. https://doi.org/10.1172/JCI124791.
View: Text | PDF
Research Article Vascular biology

Hemodynamic regulation of perivalvular endothelial gene expression prevents deep venous thrombosis

  • Text
  • PDF
Abstract

Deep venous thrombosis (DVT) and secondary pulmonary embolism cause approximately 100,000 deaths per year in the United States. Physical immobility is the most significant risk factor for DVT, but a molecular and cellular basis for this link has not been defined. We found that the endothelial cells surrounding the venous valve, where DVTs originate, express high levels of FOXC2 and PROX1, transcription factors known to be activated by oscillatory shear stress. The perivalvular venous endothelial cells exhibited a powerful antithrombotic phenotype characterized by low levels of the prothrombotic proteins vWF, P-selectin, and ICAM1 and high levels of the antithrombotic proteins thrombomodulin (THBD), endothelial protein C receptor (EPCR), and tissue factor pathway inhibitor (TFPI). The perivalvular antithrombotic phenotype was lost following genetic deletion of FOXC2 or femoral artery ligation to reduce venous flow in mice, and at the site of origin of human DVT associated with fatal pulmonary embolism. Oscillatory blood flow was detected at perivalvular sites in human veins following muscular activity, but not in the immobile state or after activation of an intermittent compression device designed to prevent DVT. These findings support a mechanism of DVT pathogenesis in which loss of muscular activity results in loss of oscillatory shear–dependent transcriptional and antithrombotic phenotypes in perivalvular venous endothelial cells, and suggest that prevention of DVT and pulmonary embolism may be improved by mechanical devices specifically designed to restore perivalvular oscillatory flow.

Authors

John D. Welsh, Mark H. Hoofnagle, Sharika Bamezai, Michael Oxendine, Lillian Lim, Joshua D. Hall, Jisheng Yang, Susan Schultz, James Douglas Engel, Tsutomu Kume, Guillermo Oliver, Juan M. Jimenez, Mark L. Kahn

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (2.01 MB)

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts