Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Smooth muscle cell–specific fibronectin-EDA mediates phenotypic switching and neointimal hyperplasia
Manish Jain, … , Steven R. Lentz, Anil K. Chauhan
Manish Jain, … , Steven R. Lentz, Anil K. Chauhan
Published November 25, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124708.
View: Text | PDF
Categories: Research Article Vascular biology

Smooth muscle cell–specific fibronectin-EDA mediates phenotypic switching and neointimal hyperplasia

  • Text
  • PDF
Abstract

Fibronectin–splice variant containing extra domain A (Fn-EDA) is associated with smooth muscle cells (SMCs) following vascular injury. The role of SMC-derived Fn-EDA in SMC phenotypic switching or its implication in neointimal hyperplasia remains unclear. Herein, using human coronary artery sections with a bare metal stent, we demonstrate the expression of Fn-EDA in the vicinity of SMC-rich neointima and peri-strut areas. In mice, Fn-EDA colocalizes with SMCs in the neointima of injured carotid arteries and promotes neointima formation in the comorbid condition of hyperlipidemia by potentiating SMC proliferation and migration. No sex-based differences were observed. Mechanistic studies suggested that Fn-EDA mediates integrin- and TLR4-dependent proliferation and migration through activation of FAK/Src and Akt1/mTOR signaling, respectively. Specific deletion of Fn-EDA in SMCs, but not in endothelial cells, reduced intimal hyperplasia and suppressed the SMC synthetic phenotype concomitant with decreased Akt1/mTOR signaling. Targeting Fn-EDA in human aortic SMCs suppressed the synthetic phenotype and downregulated Akt1/mTOR signaling. These results reveal that SMC-derived Fn-EDA potentiates phenotypic switching in human and mouse aortic SMCs and neointimal hyperplasia in the mouse. We suggest that targeting Fn-EDA could be explored as a potential therapeutic strategy to reduce neointimal hyperplasia.

Authors

Manish Jain, Nirav Dhanesha, Prakash Doddapattar, Mehul R. Chorawala, Manasa K. Nayak, Anne Cornelissen, Liang Guo, Aloke V. Finn, Steven R. Lentz, Anil K. Chauhan

×

Graphical abstract

Options: View larger image (or click on image)
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts