Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Smooth muscle cell–specific fibronectin-EDA mediates phenotypic switching and neointimal hyperplasia
Manish Jain, … , Steven R. Lentz, Anil K. Chauhan
Manish Jain, … , Steven R. Lentz, Anil K. Chauhan
Published November 25, 2019
Citation Information: J Clin Invest. 2020;130(1):295-314. https://doi.org/10.1172/JCI124708.
View: Text | PDF
Research Article Vascular biology

Smooth muscle cell–specific fibronectin-EDA mediates phenotypic switching and neointimal hyperplasia

  • Text
  • PDF
Abstract

Fibronectin–splice variant containing extra domain A (Fn-EDA) is associated with smooth muscle cells (SMCs) following vascular injury. The role of SMC-derived Fn-EDA in SMC phenotypic switching or its implication in neointimal hyperplasia remains unclear. Herein, using human coronary artery sections with a bare metal stent, we demonstrate the expression of Fn-EDA in the vicinity of SMC-rich neointima and peri-strut areas. In mice, Fn-EDA colocalizes with SMCs in the neointima of injured carotid arteries and promotes neointima formation in the comorbid condition of hyperlipidemia by potentiating SMC proliferation and migration. No sex-based differences were observed. Mechanistic studies suggested that Fn-EDA mediates integrin- and TLR4-dependent proliferation and migration through activation of FAK/Src and Akt1/mTOR signaling, respectively. Specific deletion of Fn-EDA in SMCs, but not in endothelial cells, reduced intimal hyperplasia and suppressed the SMC synthetic phenotype concomitant with decreased Akt1/mTOR signaling. Targeting Fn-EDA in human aortic SMCs suppressed the synthetic phenotype and downregulated Akt1/mTOR signaling. These results reveal that SMC-derived Fn-EDA potentiates phenotypic switching in human and mouse aortic SMCs and neointimal hyperplasia in the mouse. We suggest that targeting Fn-EDA could be explored as a potential therapeutic strategy to reduce neointimal hyperplasia.

Authors

Manish Jain, Nirav Dhanesha, Prakash Doddapattar, Mehul R. Chorawala, Manasa K. Nayak, Anne Cornelissen, Liang Guo, Aloke V. Finn, Steven R. Lentz, Anil K. Chauhan

×

Figure 6

TLR4 contributes to Fn-EDA–mediated SMC proliferation and migration.

Options: View larger image (or click on image) Download as PowerPoint
TLR4 contributes to Fn-EDA–mediated SMC proliferation and migration.
(A)...
(A) SMCs from Apoe–/– mice were stimulated with PDGF-BB for 24 hours, and cell extracts were immunoprecipitated (IP) with either anti-TLR4 or anti–Fn-EDA antibody and immunoblotted by anti–Fn-EDA. (B) Serum-starved aortic SMCs from Fn-EDA–/– Apoe–/– and Fn-EDA–/– TLR4–/– Apoe–/– mice were stimulated with either cFn-EDA (20 μg/mL) or pFn lacking EDA (20 μg/mL) for 24 hours. The left panels show representative BrdU-positive cells costained with αSMA (green) and Hoechst (blue). Scale bars: 50 μm. The right panel shows the quantification of BrdU-positive cells to the total number of cells (n = 5–6 per group). (C) Quantitative data of cell cycle distribution in aortic SMCs treated with either cFn-EDA or pFn lacking EDA (n = 6–8 per group). (D) The left panels show representative phase-contrast images of SMC migration in the scratch assay. The right panel shows quantification of the migrated area (n = 6–7 per group). Scale bars: 500 μm. Values are represented as mean ± SEM. Statistical analysis: 1-way ANOVA with Bonferroni’s post hoc test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts