Obesity and overnutrition increase levels of reactive sugar- and lipid-derived aldehydes called reactive carbonyl species (RCS). Increased tissue and circulating RCS levels have been tied to insulin resistance and inflammation, but previous pharmacological approaches to target RCS have had equivocal outcomes. In this issue of the JCI, Anderson et al. present evidence for the development and implementation of carnisonol, a compound that is biologically stable in vivo and shows impressive effects on improving metabolism and inflammation in rodent models of diet-induced obesity and metabolic dysfunction.
Jacob M. Haus, John P. Thyfault
Usage data is cumulative from September 2023 through September 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 296 | 50 |
129 | 18 | |
Figure | 75 | 2 |
Citation downloads | 44 | 0 |
Totals | 544 | 70 |
Total Views | 614 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.