Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Systemic silencing of Phd2 causes reversible immune regulatory dysfunction
Atsushi Yamamoto, … , Peter J. Ratcliffe, Chris W. Pugh
Atsushi Yamamoto, … , Peter J. Ratcliffe, Chris W. Pugh
Published June 4, 2019
Citation Information: J Clin Invest. 2019;129(9):3640-3656. https://doi.org/10.1172/JCI124099.
View: Text | PDF
Research Article Immunology

Systemic silencing of Phd2 causes reversible immune regulatory dysfunction

  • Text
  • PDF
Abstract

Physiological effects of cellular hypoxia are sensed by prolyl hydroxylase (PHD) enzymes, which regulate HIFs. Genetic interventions on HIF/PHD pathways have revealed multiple phenotypes that extend the known biology of hypoxia. Recent studies have unexpectedly implicated HIF in aspects of multiple immune and inflammatory pathways. However, such studies are often limited by systemic lethal effects and/or use tissue-specific recombination systems, which are inherently irreversible, unphysiologically restricted, and difficult to time. To study these processes better, we developed recombinant mice that expressed tetracycline-regulated shRNAs broadly targeting the main components of the HIF/PHD pathway, permitting timed bidirectional intervention. We show that stabilization of HIF levels in adult mice through PHD2 enzyme silencing by RNA interference or inducible recombination of floxed alleles results in multilineage leukocytosis and features of autoimmunity. This phenotype was rapidly normalized on reestablishment of the hypoxia-sensing machinery when shRNA expression was discontinued. In both situations, these effects were mediated principally through the Hif2a isoform. Assessment of cells bearing Treg markers from these mice revealed defective function and proinflammatory effects in vivo. We believe our findings reveal a new role for the PHD2/HIF2α pathway in the reversible regulation of T cell and immune activity.

Authors

Atsushi Yamamoto, Joanna Hester, Philip S. Macklin, Kento Kawai, Masateru Uchiyama, Daniel Biggs, Tammie Bishop, Katherine Bull, Xiaotong Cheng, Eleanor Cawthorne, Mathew L. Coleman, Tanya L. Crockford, Ben Davies, Lukas E. Dow, Rob Goldin, Kamil Kranc, Hiromi Kudo, Hannah Lawson, James McAuliffe, Kate Milward, Cheryl L. Scudamore, Elizabeth Soilleux, Fadi Issa, Peter J. Ratcliffe, Chris W. Pugh

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 908 141
PDF 124 33
Figure 464 6
Supplemental data 101 7
Citation downloads 74 0
Totals 1,671 187
Total Views 1,858
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts