The mechanisms that modulate the kinetics of muscle relaxation are critically important for muscle function. A prime example of the impact of impaired relaxation kinetics is nemaline myopathy caused by mutations in KBTBD13 (NEM6). In addition to weakness, NEM6 patients have slow muscle relaxation, compromising contractility and daily life activities. The role of KBTBD13 in muscle is unknown, and the pathomechanism underlying NEM6 is undetermined. A combination of transcranial magnetic stimulation–induced muscle relaxation, muscle fiber– and sarcomere-contractility assays, low-angle x-ray diffraction, and superresolution microscopy revealed that the impaired muscle-relaxation kinetics in NEM6 patients are caused by structural changes in the thin filament, a sarcomeric microstructure. Using homology modeling and binding and contractility assays with recombinant KBTBD13, Kbtbd13-knockout and Kbtbd13R408C-knockin mouse models, and a GFP-labeled Kbtbd13-transgenic zebrafish model, we discovered that KBTBD13 binds to actin — a major constituent of the thin filament — and that mutations in KBTBD13 cause structural changes impairing muscle-relaxation kinetics. We propose that this actin-based impaired relaxation is central to NEM6 pathology.
Josine M. de Winter, Joery P. Molenaar, Michaela Yuen, Robbert van der Pijl, Shengyi Shen, Stefan Conijn, Martijn van de Locht, Menne Willigenburg, Sylvia J.P. Bogaards, Esmee S.B. van Kleef, Saskia Lassche, Malin Persson, Dilson E. Rassier, Tamar E. Sztal, Avnika A. Ruparelia, Viola Oorschot, Georg Ramm, Thomas E. Hall, Zherui Xiong, Christopher N. Johnson, Frank Li, Balazs Kiss, Noelia Lozano-Vidal, Reinier A. Boon, Manuela Marabita, Leonardo Nogara, Bert Blaauw, Richard J. Rodenburg, Benno Küsters, Jonne Doorduin, Alan H. Beggs, Henk Granzier, Ken Campbell, Weikang Ma, Thomas Irving, Edoardo Malfatti, Norma B. Romero, Robert J. Bryson-Richardson, Baziel G.M. van Engelen, Nicol C. Voermans, Coen A.C. Ottenheijm
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 941 | 151 |
146 | 46 | |
Figure | 486 | 7 |
Table | 63 | 0 |
Supplemental data | 462 | 22 |
Citation downloads | 115 | 0 |
Totals | 2,213 | 226 |
Total Views | 2,439 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.