Abstract

Calcineurin acts as a calcium-activated phosphatase that dephosphorylates various substrates, including members of the nuclear factor of activated T cells (NFAT) family, to trigger their nuclear translocation and transcriptional activity. However, the detailed mechanism regulating the recruitment of NFATs to calcineurin remains poorly understood. Here, we report that calcineurin A (CNA), encoded by PPP3CB or PPP3CC, is constitutively ubiquitinated on lysine 327, and this polyubiquitin chain is rapidly removed by ubiquitin carboxyl-terminal hydrolase 16 (USP16) in response to intracellular calcium stimulation. The K29-linked ubiquitination of CNA impairs NFAT recruitment and transcription of NFAT-targeted genes. USP16 deficiency prevents calcium-triggered deubiquitination of CNA in a manner consistent with defective maintenance and proliferation of peripheral T cells. T cell–specific USP16 knockout mice exhibit reduced severity of experimental autoimmune encephalitis and inflammatory bowel disease. Our data reveal the physiological function of CNA ubiquitination and its deubiquitinase USP16 in peripheral T cells. Notably, our results highlight a critical mechanism for the regulation of calcineurin activity and a novel immunosuppressive drug target for the treatment of autoimmune diseases.

Authors

Yu Zhang, Rong-bei Liu, Qian Cao, Ke-qi Fan, Ling-jie Huang, Jian-shuai Yu, Zheng-jun Gao, Tao Huang, Jiang-yan Zhong, Xin-tao Mao, Fei Wang, Peng Xiao, Yuan Zhao, Xin-hua Feng, Yi-yuan Li, Jin Jin

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement