Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Composition of pertussis vaccine given to infants determines long-term T cell polarization
Stanley A. Plotkin
Stanley A. Plotkin
Published August 6, 2018
Citation Information: J Clin Invest. 2018;128(9):3742-3744. https://doi.org/10.1172/JCI122726.
View: Text | PDF
Commentary

Composition of pertussis vaccine given to infants determines long-term T cell polarization

  • Text
  • PDF
Abstract

The introduction of a whole-cell vaccine against Bordetella pertussis, the causative agent of whooping cough, dramatically reduced disease incidence. Unfortunately, the whole-cell formulation also induces severe reactions in some infants. Because of this, acellular vaccines have been developed, but they are used exclusively in high-income countries. However, the acellular vaccines do not provide long-term protection, and despite the use of routine boosters, the disease is on the rise. In this issue of the JCI, da Silva Antunes and colleagues demonstrate that the whole-cell vaccines promote long-term polarization toward Th1 and Th17 responses, while the acellular vaccines induce Th2 polarization. Moreover, this polarization is long term, as the response to acellular boosters is dependent on the initial vaccine given in infancy. The authors speculate that Tregs may be induced by initial acellular vaccine administration. The results of this study have important implications for the development of pertussis vaccination strategies that would induce Th1 and Th17 polarization.

Authors

Stanley A. Plotkin

×

Full Text PDF | Download (105.33 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts