Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Citations to this article

FoxO3 activation in hypoxic tubules prevents chronic kidney disease
Ling Li, … , Qais Al-Awqati, Fangming Lin
Ling Li, … , Qais Al-Awqati, Fangming Lin
Published March 26, 2019
Citation Information: J Clin Invest. 2019;129(6):2374-2389. https://doi.org/10.1172/JCI122256.
View: Text | PDF
Research Article Cell biology Nephrology

FoxO3 activation in hypoxic tubules prevents chronic kidney disease

  • Text
  • PDF
Abstract

Acute kidney injury (AKI) can lead to chronic kidney disease (CKD) if injury is severe and/or repair is incomplete. However, the pathogenesis of CKD following renal ischemic injury is not fully understood. Capillary rarefaction and tubular hypoxia are common findings during the AKI-to-CKD transition. We investigated the tubular stress response to hypoxia and demonstrated that a stress-responsive transcription factor, FoxO3, was regulated by prolyl hydroxylase (PHD). Hypoxia inhibited FoxO3 prolyl hydroxylation and FoxO3 degradation, leading to FoxO3 accumulation and activation in tubular cells. Hypoxia-activated HIF-1α contributed to FoxO3 activation and functioned to protect kidneys, as tubular deletion of HIF-1α decreased hypoxia-induced FoxO3 activation and resulted in more severe tubular injury and interstitial fibrosis following ischemic injury. Strikingly, tubular deletion of FoxO3 during the AKI-to-CKD transition aggravated renal structural and functional damage, leading to a much more profound CKD phenotype. We show that tubular deletion of FoxO3 resulted in decreased autophagic response and increased oxidative injury, which may explain renal protection by FoxO3. Our study indicates that in the hypoxic kidney, stress-responsive transcription factors can be activated for adaptions to counteract hypoxic insults, thus attenuating CKD development.

Authors

Ling Li, Huimin Kang, Qing Zhang, Vivette D. D’Agati, Qais Al-Awqati, Fangming Lin

×

Loading citation information...
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts