Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Oncolytic virotherapy for small-cell lung cancer induces immune infiltration and prolongs survival
Patrick Kellish, Daniil Shabashvili, Masmudur M. Rahman, Akbar Nawab, Maria V. Guijarro, Min Zhang, Chunxia Cao, Nissin Moussatche, Theresa Boyle, Scott Antonia, Mary Reinhard, Connor Hartzell, Michael Jantz, Hiren J. Mehta, Grant McFadden, Frederic J. Kaye, Maria Zajac-Kaye
Patrick Kellish, Daniil Shabashvili, Masmudur M. Rahman, Akbar Nawab, Maria V. Guijarro, Min Zhang, Chunxia Cao, Nissin Moussatche, Theresa Boyle, Scott Antonia, Mary Reinhard, Connor Hartzell, Michael Jantz, Hiren J. Mehta, Grant McFadden, Frederic J. Kaye, Maria Zajac-Kaye
View: Text | PDF
Research Article Oncology

Oncolytic virotherapy for small-cell lung cancer induces immune infiltration and prolongs survival

  • Text
  • PDF
Abstract

Oncolytic virotherapy has been proposed as an ablative and immunostimulatory treatment strategy for solid tumors that are resistant to immunotherapy alone; however, there is a need to optimize host immune activation using preclinical immunocompetent models in previously untested common adult tumors. We studied a modified oncolytic myxoma virus (MYXV) that shows high efficiency for tumor-specific cytotoxicity in small-cell lung cancer (SCLC), a neuroendocrine carcinoma with high mortality and modest response rates to immune checkpoint inhibitors. Using an immunocompetent SCLC mouse model, we demonstrated the safety of intrapulmonary MYXV delivery with efficient tumor-specific viral replication and cytotoxicity associated with induction of immune cell infiltration. We observed increased SCLC survival following intrapulmonary MYXV that was enhanced by combined low-dose cisplatin. We also tested intratumoral MYXV delivery and observed immune cell infiltration associated with tumor necrosis and growth inhibition in syngeneic murine allograft tumors. Freshly collected primary human SCLC tumor cells were permissive to MYXV and intratumoral delivery into patient-derived xenografts resulted in extensive tumor necrosis. We confirmed MYXV cytotoxicity in classic and variant SCLC subtypes as well as cisplatin-resistant cells. Data from 26 SCLC human patients showed negligible immune cell infiltration, supporting testing MYXV as an ablative and immune-enhancing therapy.

Authors

Patrick Kellish, Daniil Shabashvili, Masmudur M. Rahman, Akbar Nawab, Maria V. Guijarro, Min Zhang, Chunxia Cao, Nissin Moussatche, Theresa Boyle, Scott Antonia, Mary Reinhard, Connor Hartzell, Michael Jantz, Hiren J. Mehta, Grant McFadden, Frederic J. Kaye, Maria Zajac-Kaye

×

Figure 4

MYXV localizes to the lungs of tumor bearing mice resulting in a prolonged immune response.

Options: View larger image (or click on image) Download as PowerPoint
MYXV localizes to the lungs of tumor bearing mice resulting in a prolong...
(A) Bioluminescence imaging of conditional Ad-Cre–treated p53–/–/Rb1–/–/p130–/– mice before treatment, 3 days after treatment, and 7 days after treatment with vMyx-FLuc. vMyx-FLuc was administered by intranasal instillation (5 × 107 FFU in 60 μl PBS). (B) Bioluminescent imaging of resected lungs from conditional Ad-Cre–treated p53–/–/Rb1–/–/p130–/– mice (SCLC positive) at 3 and 7 days after treatment with vMyx-FLuc, compared with resected lungs from control mice lacking p53/Rb1/p130 knockouts (SCLC negative) 3 days after vMyx-FLuc. (C) Timeline indicating experimental design for examining immune responses 30 days after vMyx-M135KO-GFP. Three months after Ad-Cre tumor induction, mice were treated twice with MYXV (5 × 107 FFU in 60 μl PBS) 48 hours apart via intranasal instillation, 30 days after MYXV treatment mice were euthanized and the lungs examined. (D) Histological analysis of mice 30 days after intranasal instillation of PBS or MYXV showing H&E-stained FFPE sections. Higher magnification inset shows effects on individual tumorlets. (E) Anti-CD45 IHC-stained FFPE serial sections. Scale bars, 500 μm.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts