Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Endothelial pyruvate kinase M2 maintains vascular integrity
Boa Kim, … , Kristina Li, Zolt Arany
Boa Kim, … , Kristina Li, Zolt Arany
Published September 17, 2018
Citation Information: J Clin Invest. 2018;128(10):4543-4556. https://doi.org/10.1172/JCI120912.
View: Text | PDF
Research Article Metabolism Vascular biology

Endothelial pyruvate kinase M2 maintains vascular integrity

  • Text
  • PDF
Abstract

The M2 isoform of pyruvate kinase (PKM2) is highly expressed in most cancer cells, and has been studied extensively as a driver of oncogenic metabolism. In contrast, the role of PKM2 in nontransformed cells is little studied, and nearly nothing is known of its role, if any, in quiescent cells. We show here that endothelial cells express PKM2 almost exclusively over PKM1. In proliferating endothelial cells, PKM2 is required to suppress p53 and maintain cell cycle progression. In sharp contrast, PKM2 has a strikingly different role in quiescent endothelial cells, where inhibition of PKM2 leads to degeneration of tight junctions and barrier function. Mechanistically, PKM2 regulates barrier function independently of its canonical activity as a pyruvate kinase. Instead, PKM2 suppresses NF-kB and its downstream target, the vascular permeability factor angiopoietin 2. As a consequence, loss of endothelial cell PKM2 in vivo predisposes mice to VEGF-induced vascular leak, and to severe bacteremia and death in response to sepsis. Together, these data demonstrate new roles of PKM2 in quiescent cells, and highlight the need for caution in developing cancer therapies that target PKM2.

Authors

Boa Kim, Cholsoon Jang, Harita Dharaneeswaran, Jian Li, Mohit Bhide, Steven Yang, Kristina Li, Zolt Arany

×

Figure 6

PKM2 suppresses p53-mediated growth arrest.

Options: View larger image (or click on image) Download as PowerPoint
PKM2 suppresses p53-mediated growth arrest.
(A) Flow cytometry analysis ...
(A) Flow cytometry analysis of cell cycle with propidium iodide (PI) staining in siCTL, siPKM2, and siPKM2 with 500 μM thymine (Th) supplementation (n = 3). (B) Growth curve demonstrating mild rescue of siPKM2 HUVECs by thymine supplementation. Cell cycle analysis with PI staining shows block at both G0/G1 and G2/M phases by thymine supplementation in HUVECs with siPKM2 (n = 3). (C) qPCR analysis of mRNA expression in HUVECs with siC versus siPKM2 (n = 3). (D) qPCR analysis of mRNA expression and Western blot analysis of protein expression with double knockdown of p53 or p21 in the presence of siPKM2 (n = 3). (E) Growth curve demonstrating proliferation rescue of siPKM2 HUVECs with double knockdown of p53. Western blot analysis of cyclin proteins (CCNE1, late G1 phase; CCNB1, M phase; and CCND1, early G1 phase) (n = 4). (F) Growth curve demonstrating proliferation rescue of siPKM2 HUVECs with double knockdown of p21, downstream of p53 (n = 4). (G) qPCR analysis of mRNA expression at indicated density (15% to 100%) of HUVECs. D1 and D3 indicate day 1 and day 3 after reaching 100% confluency, respectively (n = 3). All data are mean ± SD. **P < 0.01, by 2-tailed Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts