Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119724

Genetic identification of two major modifier loci of polycystic kidney disease progression in pcy mice.

D D Woo, D K Nguyen, N Khatibi, and P Olsen

Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095-1689, USA. dwoo@med1.medsch.ucla.edu

Find articles by Woo, D. in: PubMed | Google Scholar

Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095-1689, USA. dwoo@med1.medsch.ucla.edu

Find articles by Nguyen, D. in: PubMed | Google Scholar

Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095-1689, USA. dwoo@med1.medsch.ucla.edu

Find articles by Khatibi, N. in: PubMed | Google Scholar

Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095-1689, USA. dwoo@med1.medsch.ucla.edu

Find articles by Olsen, P. in: PubMed | Google Scholar

Published October 15, 1997 - More info

Published in Volume 100, Issue 8 on October 15, 1997
J Clin Invest. 1997;100(8):1934–1940. https://doi.org/10.1172/JCI119724.
© 1997 The American Society for Clinical Investigation
Published October 15, 1997 - Version history
View PDF
Abstract

Unlike the uniform disease progression in inbred animals, polycystic kidney disease (PKD) progression within human families can be highly variable. This may be due to environmental or genetic factors or both. To determine if PKD severity can be influenced by modifier genes, we carried out an intercross between DBA/2-pcy/pcy and Mus m. castaneous involving 3,105 6-wk-old F2 mice. Large differences in PKD severity were observed in this cross. In addition, 23/ 800 phenotypically normal mice were pcy/pcy genotypically. These results demonstrated that PKD progression in pcy/ pcy mice is a quantitative trait that is strongly modulated by modifier genes. Whole genome quantitative trait loci mapping of 114 selected pcy/pcy mice (68 with the mild PKD and 46 with severe PKD) identified two loci, MOP1 and MOP2 that strongly modulate PKD progression. MOP1 (max LOD score = 10.3 at D4Mit111) and MOP2 (max LOD score = 13.8 at D16Mit1) accounted for 36.7 and 46.8% of the phenotypic variance, respectively. Two-factor ANOVA of the phenotypes and genotypes of all 673 pcy/pcy mice from our cross indicated that MOP1 and MOP2 alleles regulate PKD progression in a complex additive manner. Characterization of these novel modifying loci may provide additional insights into the pathogenesis of polycystic kidney diseases.

Version history
  • Version 1 (October 15, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts