Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Glucocorticoid-mediated repression of cytokine gene transcription in human arteritis-SCID chimeras.
A Brack, … , C M Weyand, J J Goronzy
A Brack, … , C M Weyand, J J Goronzy
Published June 15, 1997
Citation Information: J Clin Invest. 1997;99(12):2842-2850. https://doi.org/10.1172/JCI119477.
View: Text | PDF
Research Article

Glucocorticoid-mediated repression of cytokine gene transcription in human arteritis-SCID chimeras.

  • Text
  • PDF
Abstract

Giant cell arteritis (GCA) is a vasculitic syndrome that preferentially affects medium and large-sized arteries. Glucocorticoid therapy resolves clinical symptoms within hours to days, but therapy has to be continued over several years to prevent disease relapses. It is not known whether and how glucocorticoids affect the function of the inflammatory infiltrate or why the disease persists subclinically despite chronic treatment. GCA is self-sustained in temporal arteries engrafted into SCID mice, providing a model in which the mechanisms of action and limitations of glucocorticoid therapy can be examined in vivo. Administration of dexamethasone to temporal artery-SCID chimeras for 1 wk induced a partial suppression of T cell and macrophage function as indicated by the reduced tissue concentrations of IL-2, IL-1beta, and IL-6 mRNA, and by the diminished expression of inducible NO synthase. In contrast, synthesis of IFN-gamma mRNA was only slightly decreased, and expression of TGF-beta1 was unaffected. These findings correlated with activation of the IkappaBalpha gene and blockade of the nuclear translocation of NFkappaB in the xenotransplanted tissue. Dose-response experiments suggested that steroid doses currently used in clinical medicine are suboptimal in repressing NFkappaB-mediated cytokine production in the inflammatory lesions. Chronic steroid therapy was able to deplete the T cell products IL-2 and IFN-gamma, whereas the activation of tissue-infiltrating macrophages was only partially affected. IL-1beta transcription was abrogated; in contrast, TGF-beta1 mRNA synthesis was steroid resistant. The persistence of TGF-beta1-transcribing macrophages, despite paralysis of T cell function, may provide an explanation for the chronicity of the disease, and may identify a novel therapeutic target in this inflammatory vasculopathy.

Authors

A Brack, H L Rittner, B R Younge, C Kaltschmidt, C M Weyand, J J Goronzy

×

Usage data is cumulative from September 2024 through September 2025.

Usage JCI PMC
Text version 351 35
PDF 57 29
Citation downloads 59 0
Totals 467 64
Total Views 531
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts