Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Cloning and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene and its expression in islet neogenesis in hamsters.
R Rafaeloff, … , W P Duguid, A I Vinik
R Rafaeloff, … , W P Duguid, A I Vinik
Published May 1, 1997
Citation Information: J Clin Invest. 1997;99(9):2100-2109. https://doi.org/10.1172/JCI119383.
View: Text | PDF
Research Article

Cloning and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene and its expression in islet neogenesis in hamsters.

  • Text
  • PDF
Abstract

Induction of islet neogenesis by cellophane wrapping (CW) reverses streptozotocin-induced (STZ) diabetes. Administration of Ilotropin, a protein extract isolated from CW pancreata, causes recapitulation of normal islet ontogeny and reverses STZ diabetes, reducing mortality by 50%. We investigated the hypothesis that a novel gene encoding a constituent of Ilotropin was expressed in the hamster pancreas undergoing islet neogenesis. Islet neogenesis associated protein (INGAP) is a product of a novel gene expressed in regenerating hamster pancreas. Northern blot analysis showed a strong single transcript of 850 bp at 1 and 2 d after CW that disappeared by the 6th day and was absent from untreated control pancreata. INGAP gene is expressed in acinar cells, but not in islets. Western blot analysis demonstrated the presence of INGAP in Ilotropin but not in extracts from control pancreata. A synthetic pentadecapeptide, corresponding to a region unique to INGAP, stimulated a 2.4-fold increase in [3H]thymidine incorporation into hamster duct epithelium in primary culture and a rat pancreatic duct cell line but had no effect on a hamster insulinoma tumor cell line. A portion of human INGAP gene was cloned and appears to be highly homologous to the hamster gene. This data suggests that the INGAP gene is a novel pancreatic gene expressed during islet neogenesis whose protein product is a constituent of Ilotropin and is capable of initiating duct cell proliferation, a prerequisite for islet neogenesis.

Authors

R Rafaeloff, G L Pittenger, S W Barlow, X F Qin, B Yan, L Rosenberg, W P Duguid, A I Vinik

×

Usage data is cumulative from September 2022 through September 2023.

Usage JCI PMC
Text version 187 38
PDF 18 14
Citation downloads 19 0
Totals 224 52
Total Views 276

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts