Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Kinetic parameters for high density lipoprotein apoprotein AI and cholesteryl ester transport in the hamster.
L A Woollett, D K Spady
L A Woollett, D K Spady
Published April 1, 1997
Citation Information: J Clin Invest. 1997;99(7):1704-1713. https://doi.org/10.1172/JCI119334.
View: Text | PDF
Research Article

Kinetic parameters for high density lipoprotein apoprotein AI and cholesteryl ester transport in the hamster.

  • Text
  • PDF
Abstract

These studies were undertaken to determine the kinetic characteristics of high density lipoprotein (HDL) apo AI and cholesteryl ester transport in the hamster in vivo. Saturable HDL apo AI transport was demonstrated in the kidneys, adrenal glands, and liver. Saturable HDL cholesteryl ester transport was highest in the adrenal glands and liver. In the liver and adrenal glands, maximal transport rates (J(m)) for receptor dependent uptake were similar for the protein and cholesteryl ester moieties; however, the concentration of HDL necessary to achieve half-maximal transport (K(m)) was 20- to 30-fold higher for apo AI. Consequently, at normal plasma HDL concentrations, the clearance of HDL cholesteryl ester exceeded that of HDL apo AI by approximately 10-fold in the adrenal glands and by approximately fivefold in the liver. At normal HDL concentrations, the majority of HDL cholesteryl ester (76%) was cleared by the liver whereas the majority of HDL apo AI (77%) was cleared by extrahepatic tissues. The rate of HDL cholesteryl ester uptake by the liver equaled the rate of cholesterol acquisition by all extrahepatic tissues suggesting that HDL cholesteryl ester uptake by the liver accurately reflects the rate of "reverse cholesterol transport." Receptor dependent HDL cholesteryl ester uptake by the liver was maximal (saturated) at normal plasma HDL concentrations. Consequently, changes in plasma HDL concentrations are not accompanied by parallel changes in the delivery of HDL cholesteryl ester to the liver unless the number or affinity of transporters is also regulated.

Authors

L A Woollett, D K Spady

×

Full Text PDF

Download PDF (225.34 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts