Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Upregulation of aquaporin-2 water channel expression in chronic heart failure rat.
D L Xu, … , J K Kim, R W Schrier
D L Xu, … , J K Kim, R W Schrier
Published April 1, 1997
Citation Information: J Clin Invest. 1997;99(7):1500-1505. https://doi.org/10.1172/JCI119312.
View: Text | PDF
Research Article

Upregulation of aquaporin-2 water channel expression in chronic heart failure rat.

  • Text
  • PDF
Abstract

Aquaporin-2 (AQP2) mediates vasopressin-regulated collecting duct water permeability. Chronic heart failure (CHF) is characterized by abnormal renal water retention. We hypothetized that upregulation of aquaporin-2 water channel could account for the water retention in CHF. Male rats underwent either a left coronary artery ligation, a model of CHF, or were sham operated. 31-33 d after surgery, mean arterial pressure (MAP) and cardiac output were measured in conscious animals, and the animals were killed 24 h later. Cardiac output (CO) and plasma osmolality were significantly decreased and plasma vasopressin increased in the CHF as compared to the sham-operated rats. Both mRNA and protein AQP2 were significantly increased in the kidneys of the CHF rats. The effect of oral administration of a nonpeptide V2 vasopressin receptor antagonist, OPC 31260, was therefore investigated. OPC 31260 induced a significant increase in diuresis, decrease in urinary osmolality, and rise in plasma osmolality in the OPC 31260-treated CHF rats as compared to untreated CHF rats. The mRNA and protein AQP2 were significantly diminished in both cortex and inner medulla of the treated CHF rats. In conclusion, an early upregulation of AQP2 is present in CHF rats and this upregulation is inhibited by the administration of a V2 receptor antagonist. The results indicate a major role for vasopressin in the upregulation of AQP2 water channels and water retention in experimental CHF in the rat.

Authors

D L Xu, P Y Martin, M Ohara, J St John, T Pattison, X Meng, K Morris, J K Kim, R W Schrier

×

Full Text PDF

Download PDF (268.58 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts