Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI119236

Lung lymphocyte elimination by apoptosis in the murine response to intratracheal particulate antigen.

A M Milik, V A Buechner-Maxwell, J Sonstein, S Kim, G D Seitzman, T F Beals, and J L Curtis

Department of Internal Medicine, University of Michigan, Ann Arbor 48109-0760, USA.

Find articles by Milik, A. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Michigan, Ann Arbor 48109-0760, USA.

Find articles by Buechner-Maxwell, V. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Michigan, Ann Arbor 48109-0760, USA.

Find articles by Sonstein, J. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Michigan, Ann Arbor 48109-0760, USA.

Find articles by Kim, S. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Michigan, Ann Arbor 48109-0760, USA.

Find articles by Seitzman, G. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Michigan, Ann Arbor 48109-0760, USA.

Find articles by Beals, T. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, University of Michigan, Ann Arbor 48109-0760, USA.

Find articles by Curtis, J. in: JCI | PubMed | Google Scholar

Published March 1, 1997 - More info

Published in Volume 99, Issue 5 on March 1, 1997
J Clin Invest. 1997;99(5):1082–1091. https://doi.org/10.1172/JCI119236.
© 1997 The American Society for Clinical Investigation
Published March 1, 1997 - Version history
View PDF
Abstract

Pulmonary immune responses are suited to determine mechanisms of lymphocyte elimination, as lung inflammation must be regulated tightly to preserve gas exchange. The self-terminating response of primed C57BL/6 mice to intratracheal challenge with the T cell-dependent Ag sheep erythrocytes (SRBC) was used to test the importance of lung lymphocyte apoptosis in pulmonary immunoregulation. Apoptosis of alveolar and interstitial lymphocytes was demonstrated morphologically, by three independent methods to detect DNA fragmentation, and by surface expression of phosphatidylserine. Apoptotic lymphocytes were exclusively CD4-, CD8-, B220-, but many were CD3+ and Thy 1+. Inhibiting apoptosis by in vivo cyclosporine treatment prolonged lung lymphocyte accumulation following SRBC challenge. Experiments using mice homozygous for the lpr or gld mutations showed that pulmonary lymphocyte apoptosis depended on expression of Fas (CD95) and its ligand (Fas-L). Pulmonary inflammation increased on repeated intratracheal SRBC challenge of lpr/lpr mice, in contrast to the waning response in normal mice. These results confirm that in situ lymphocyte apoptosis contributes to termination of immune responses in nonlymphoid organs, probably because of activation-induced cell death, and may be important in inducing tolerance to repeated antigen exposure.

Version history
  • Version 1 (March 1, 1997): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts