Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Molecular and mutation trends analyses of omp1 alleles for serovar E of Chlamydia trachomatis. Implications for the immunopathogenesis of disease.
D Dean, K Millman
D Dean, K Millman
Published February 1, 1997
Citation Information: J Clin Invest. 1997;99(3):475-483. https://doi.org/10.1172/JCI119182.
View: Text | PDF
Research Article

Molecular and mutation trends analyses of omp1 alleles for serovar E of Chlamydia trachomatis. Implications for the immunopathogenesis of disease.

  • Text
  • PDF
Abstract

Serovars E, F, and D are the most prevalent Chlamydia trachomatis strains worldwide. This prevalence may relate to epitopes that enhance infectivity and transmission. There are numerous major outer membrane protein (MOMP) gene (omp1) variants described for D and F but few for E. However, omp1 constant regions are rarely sequenced yet, they may contain mutations that affect the structure/function relationship of the protein. Further, differentiating variants that occur as a result of selection from variants that contain random mutations without biologic impact is difficult. We investigated 67 urogenital E serovars and found 11 (16%) variants which contained 16 (53%) nonconservative amino acid changes. Using signature-pattern analysis, 57 amino acids throughout MOMP differentiated the E sequence set from the non-E sequence set, thus defining E strains. Four E variants did not match this signature-pattern, and, by phenetic analyses, formed new phylogenetic branches, suggesting that they may be biologically distinct variants. Our analyses offer for the first time a unique approach for identifying variants that may occur from selection and may affect infectivity and transmission. Understanding the mutation trends, phylogeny, and molecular epidemiology of E variants is essential for designing public health control interventions and a vaccine.

Authors

D Dean, K Millman

×

Full Text PDF | Download (271.10 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts