Synovial T cells in rheumatoid arthritis are highly differentiated and express a phenotype suggesting susceptibility to apoptosis (CD45RB dull, CD45RO bright, Bcl-2 low, Bax high, Fas high). However, no evidence of T cell apoptosis was found in synovial fluid from any of 28 patients studied. In contrast, synovial fluid from 10 patients with crystal arthritis showed substantial levels of T cell apoptosis. The failre of apoptosis was not an intrinsic property of rheumatoid synovial T cells, as they showed rapid spontaneous apoptosis on removal from the joint. Synovial T cells from rheumatoid arthritis and gout patients could be rescued from spontaneous apoptosis in vitro either by IL-2R gamma chain signaling cytokines (which upregulate Bcl-2 and Bcl-XL) or by interaction with synovial fibroblasts (which upregulates Bcl-xL but not Bcl-2). The phenotype of rheumatoid synovial T cells ex vivo (Bcl-2 low, Bcl-xL high) suggested a fibroblast-mediated mechanism in vivo. This was confirmed by in vitro culture of synovial T cells with fibroblasts which maintained the Bcl-xL high Bcl-2 low phenotype. Synovial T cells from gout patients were Bcl-2 low Bcl-xL low and showed clear evidence of apoptosis in vivo. Inhibition experiments suggested that an integrin-ligand interaction incorporating the Arg-Gly-Asp motif is involved in fibroblast-mediated synovial T cell survival. We propose that environmental blockade of cell death resulting from interaction with stromal cells is a major factor in the persistent T cell infiltration of chronically inflamed rheumatoid synovium.
M Salmon, D Scheel-Toellner, A P Huissoon, D Pilling, N Shamsadeen, H Hyde, A D D'Angeac, P A Bacon, P Emery, A N Akbar