Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Expression of the Gs protein alpha-subunit disrupts the normal program of differentiation in cultured murine myogenic cells.
C C Tsai, … , J E Saffitz, J J Billadello
C C Tsai, … , J E Saffitz, J J Billadello
Published January 1, 1997
Citation Information: J Clin Invest. 1997;99(1):67-76. https://doi.org/10.1172/JCI119135.
View: Text | PDF
Research Article

Expression of the Gs protein alpha-subunit disrupts the normal program of differentiation in cultured murine myogenic cells.

  • Text
  • PDF
Abstract

The manner in which growth factors acting at the cell surface regulate activity of myogenic basic-helix-loop-helix proteins in the nucleus and thus control the fate of committed skeletal myoblasts remains poorly understood. In this study, we report that immunoreactive Gs protein alpha-subunits (Gs alpha) localize to nuclei of proliferating C2C12 myoblasts but not to nuclei of differentiated postmitotic C2C12 myotubes. To explore the biological significance of this observation, we placed a cDNA encoding Gs alpha in an expression vector under the control of a steroid-inducible promoter and isolated colonies of stably transfected C2C12 myoblasts. Dexamethasone-induced expression of activated Gs alpha markedly delayed differentiation in comparison with uninduced stably transfected cells, which differentiated normally in mitogen-depleted media. Northern blot analysis showed that impaired differentiation was associated with delayed up-regulation of MyoD and myogenin and delayed down-regulation of Id, a dominant negative inhibitor of differentiation. Similar impairment of differentiation could not be reproduced in wild-type C2C12 cells by increasing intracellular cAMP either with forskolin or treatment with a cell-permeable cAMP analog. However, treatment of myoblasts with cholera toxin markedly inhibited myogenic differentiation. Taken together, these findings suggest a novel role for Gs alpha in modulating myogenic differentiation.

Authors

C C Tsai, J E Saffitz, J J Billadello

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 86 15
PDF 45 12
Citation downloads 51 0
Totals 182 27
Total Views 209
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts