Abstract

The structure of the carbohydrate of the 40-kD major outer membrane component of Chlamydia trachomatis and its role in defining infectivity of the organism were investigated. The oligosaccharides were released from the glycoprotein by N-glycanase digestion, coupled to a 2-aminopyridyl residue, and subjected to two-dimensional sugar mapping technique. The major fractions consisted of "high-mannose type" oligosaccharides containing 8-9 mannose residues. Bi- and tri-antennary "complex type" oligosaccharides having terminal galactose were detected as minor components. These oligosaccharides were N-linked and contained no sialic acid. This structural profile is consistent with our previous characterization based on lectin-binding and glycosidase digestion. Functional specificity of identified chlamydial oligosaccharides was analyzed using glycopeptides fractionated from ovalbumin and structurally defined oligosaccharides from other sources. The glycopeptide fraction having high-mannose type oligosaccharide, as compared to those having complex or hybrid-type, showed a stronger inhibitory effect on attachment and infectivity of chlamydial organisms to HeLa cells. Among high-mannose type oligosaccharides, the strongest inhibition was observed with mannose 8 as compared with mannose 6, 7, or 9. These results indicate that a specific high-mannose type oligosaccharide linked to the major outer membrane protein of C. trachomatis mediates attachment and infectivity of the organism to HeLa cells.

Authors

C Kuo, N Takahashi, A F Swanson, Y Ozeki, S Hakomori

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement