Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events.
S N Liossis, … , G M Kammer, G C Tsokos
S N Liossis, … , G M Kammer, G C Tsokos
Published December 1, 1996
Citation Information: J Clin Invest. 1996;98(11):2549-2557. https://doi.org/10.1172/JCI119073.
View: Text | PDF
Research Article

B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events.

  • Text
  • PDF
Abstract

To understand the molecular mechanisms that are responsible for the B cell overactivity that is observed in patients with SLE, we have conducted experiments in which the surface immunoglobulin (sIg)-mediated early cell signaling events were studied. The anti-sIgM-mediated free intracytoplasmic calcium ([Ca2+]i) responses were significantly higher in SLE B cells compared with responses of normal individuals and to those of patients with other systemic autoimmune rheumatic diseases. The anti-IgD mAb induced [Ca2+]i responses were also higher in lupus B cells than in controls. The magnitude of anti-sIgM-mediated Ca2+ release from intracellular stores was also increased in B cells from SLE patients compared with normal controls. The amount of inositol phosphate metabolites produced upon crosslinking of sIgM was slightly higher in patients with lupus than in normal controls, although the difference was not statistically significant. In contrast, the degree of anti-sIgM-induced protein tyrosine phosphorylation was obviously increased in lupus patients. Our study demonstrates clearly for the first time that SLE B cells exhibit aberrant early signal transduction events, including augmented calcium responses after crosslinking of the B cell receptor and increased antigen-receptor-mediated phosphorylation of protein tyrosine residues. Because the above abnormalities did not correlate with disease activity or treatment status, we propose that they may have pathogenic significance.

Authors

S N Liossis, B Kovacs, G Dennis, G M Kammer, G C Tsokos

×

Full Text PDF | Download (237.78 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts